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ABSTRACT 
 

Automated vocal biomarkers are becoming increasingly desired by speech pathologists and 

neurologists in order to extend current noninvasive measures of speech motor abnormalities 

associated with neurodegeneration. Clinical information concerning acoustical features and 

patterns can be invaluable only if the measures are based on interpretable hypotheses and described 

with regard to the impact of the disease, sexual dimorphism, and any age dependency. The 

complexity of interpretation is the main barrier between engineering applications and clinical 

practice. Despite huge developments in the field, no applicable methodology for complex acoustic 

analysis have been proposed yet. This thesis aims to design and define the automated acoustic 

analysis that could provide profound insight into speech disorders caused by neurodegeneration. 

 The database used in this research is comprised of 42 subjects with idiopathic rapid eye 

movement sleep behavior disorder; 32 subjects with early, untreated Parkinson’s disease; 26 

subjects with treated Parkinson’s disease; 22 subjects with multiple system atrophy; 15 subjects 

with progressive supranuclear palsy; 18 subjects with untreated Huntington’s disease; 13 subjects 

with treated Huntington’s disease; 17 subjects with cerebellar ataxia; 101 subjects with multiple 

sclerosis; and 284 subjects with no history of neurological or communication disorders (HC). Each 

speaker performed the sustained vowels /A/ and /I/, took a rhythm test, read a passage, 

performed a monologue, and completed a diadochokinetic task. Acoustic signals were recorded 

using a standardized procedure. Signals were processed by fully automated methods. Normative 

data were estimated by selecting an HC subgroup to match any speaker in terms of age and sex. 

All measured values were normalized by corresponding normative data and expressed in terms of 

probabilities and z-scores. A novel approach for supervised learning based on the weighted fusion 

of z-scores (SWFS) was employed for recognition of certain tendencies of disordered speech. 

Finally, the methodology was implemented in a software application and tested extensively in a 

clinical setting by an experienced speech-language pathologist for more than one year.  

 Based on a thorough evaluation, the proposed processing methods represent the most 

precise technology for the extraction of given acoustic features available up to the date of this 

thesis. The majority of speech features showed abnormalities in at least one disease group 

compared to the HC. Individual speech features did not exhibit specificity to disease. Nevertheless, 

clear tendencies with discriminative qualities were observed in combined features. The SWFS 

showed the ability to decompose any speech pattern and quantify its severity in terms of 

abnormalities, whereas the recognition accuracy was comparable with conventional classifiers. The 

clinician rated the methodology as practicable, clinically relevant, interpretable, and of benefit. Two 

case studies are presented to demonstrate the capacity of the proposed methodology. 

 This thesis introduces a methodology for the extraction of highly interpretable speech 

features using a new approach in digital signal processing, machine learning, and the modeling of 

sexual dimorphism and age dependency; investigates a large database of patients affected by 

neurodegeneration; and discusses clinical applicability based on the successful experimental use of 

the implementation in a clinical setting. The methodology was designed to meet the demands of 

clinical practice with a hope that the presented results will lead, inspire, and bolster the future 

development of automated methods for the assessment of speech disorders. 
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ABSTRAKT 
 

Biomarkery získané automatickou analýzou hlasu se těší rostoucímu zájmu logopedů i neurologů 

v souvislosti s možností rozšířit dosud značně limitovaná neinvazivní měření motorických poruch 

řeči způsobených neurodegenerativními onemocněními. Akustické řečové příznaky mohou být 

v klinické praxi vskutku neocenitelné, avšak pouze tehdy, jsou-li podloženy vysvětlitelnými 

hypotézami a popsány z hlediska dopadu onemocnění, pohlavní dvojtvárnosti a vlivu stárnutí. 

Spletitost interpretace těchto faktorů tvoří hlavní překážku bránící využití hlasových analýz v 

klinické praxi, která navzdory značnému rozvoji tohoto oboru nebyla dosud překonána. Tato práce 

zavádí metodologii pro získání srozumitelných akustických příznaků pomocí číslicového 

zpracování signálů a strojového učení a modelování pohlavní dvojtvárnosti a vlivu stárnutí; 

vyšetřuje velkou databázi pacientů s neurodegenerativními onemocněními a diskutuje použitelnost 

metody na základě experimentálního odzkoušení metody v klinické praxi.  

 Databáze zahrnovala 42 pacientů s idiopatickou poruchou chování v REM spánku (REM 

= rapid eye movement, česky: rychlé pohyby očí), 32 neléčených pacientů v rané fázi Parkinsonovy 

nemoci, 26 léčených pacientů Parkinsonovy nemoci, 22 pacientů s multisystémovou atrofií, 15 

pacientů s progresivní supranukleární obrnou, 18 neléčených pacientů s Huntingtonovou nemocí, 

13 léčených pacientů Huntingtonovy nemoci, 17 pacientů s mozečkovou ataxií, 101 pacientů s 

roztroušenou sklerózou a 274 zdravých kontrolních subjektů, kteří nevykazují a nikdy neprodělali 

neurologickou poruchu ani poruchu komunikace. Každý účastník provedl úlohu prodloužené 

fonace hlásky /A/ a /I/, rytmický test, čtení textu, monolog a diadochokinetický test. Akustické 

signály byly nahrány standardizovanou procedurou. Signály byly zpracovány automatickým 

algoritmem.  Pro každého možného řečníka byly ze skupiny zdravých kontrolních subjektů vybráni 

subjekty srovnatelné věkové skupiny a pohlaví a na jejich základě byla odhadnuta normativní data. 

Všechna měření byla normalizována pomocí normativních dat a vyjádřena jako pravděpodobnost 

a z-skóre (SWFZ). Nový přístup v rozpoznávání vzorů učených s učitelem založený na vážené fúzi 

z-skóre byl použit k popisu základních tendencí řečových poruch. Celá metodologie byla nakonec 

implementována do podoby softwarové aplikace a testována po dobu více než jednoho roku 

zkušeným logopedem v podmínkách klinické praxe.  

 Důkladná analýza ukázala, že navržené metody zpracování signálů představují 

v současnosti nejpřesnější technologie pro měření příslušných akustických příznaků. Jednotlivé 

příznaky nebyly specifické pro jednotlivá onemocnění, avšak kombinace příznaků ukázala 

specifické a rozlišitelné tendence řečových poruch. Navržená metoda SWFZ projevila 

rozpoznávací přesnost těchto tendencí srovnatelnou s běžnými klasifikátory, přičemž  umožňuje 

rozložit tyto tendence na jednotlivé komponenty a odhadnout tíži poruchy. Metoda byla 

testováním v praxi ohodnocena jako použitelná, prospěšná a poskytující klinicky relevantní a 

interpretovatelné výsledky. Způsobilost metody byla demonstrována na dvou kauzuistikách.  

 Prezentovaný proces automatické analýzy řeči poskytuje výsledky nezkreslené pohlavní 

dvojtvárností a vlivem stárnutí a umožňuje získat hluboký vhled do řečové poruchy způsobené 

neurodegenerací. Metodologie byla navržena pro uspokojení nároků klinické praxe s nadějí, že 

prezentované výsledky povedou, inspirují a podpoří budoucí vývoj automatických metod pro 

ohodnocení řečových poruch u neurodegenerativních onemocnění.  
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Symbol Meaning 
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s Steepness of the logistic function 
sdIntDur5-20 Standard deviation of intervals between 

syllables of the sequence 5-20 in rhythm task 
S Covariance matrix 
t Time 
T Period 
un Reference value of fundamental frequency 
�̂�𝑛 Estimated value of fundamental frequency 
vt Normally distributed process noise 
wi Weight assigned to the hypothesis 
wt Normally distributed observation noise 
W Set of optimized weights of hypotheses 
x Signal 
�̅� Average of signal 
𝑥 Prediction of modal fundamental frequency 
xn Sample of the signal 
xs Observation of parameterized syllable 
xt Value of the modal Fundamental frequency 
X Samples of Fourier transform of the signal 
Xs Distribution of observed parameterized 

syllables 
y Signal reconstructed from phase 
ycc Normalized cross-correlation 
yn Sample of the signal reconstructed from the 

phase 
Yk Reference label of the speaker 

�̂�𝑘 Predicted label of the speaker 
zt Measurement in Kalman filtering  
Z Z-score 
Z0 One-tailed z-score corresponding to the 

level of signifficance 
Zi Z-score of the hypothesis 
Zk Z-score of the hypothesis for the speaker 
Δt Interval between consecutive syllables 
ε Residuals of the regression model 
θ Phase of the Fourier transform 
μ Mean 
μx Mean of the signal 
π Archimedes’ constant 
σ Standard deviation 
σx Standard deviation of the signal 
𝜎𝑓0

2  Variance of the initial model of modal 
fundamental frequency 

Φ Cumulative distribution function 
χ2 Chi-square distribution 
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1 

INTRODUCTION 
 

She would be all right for a while and treat us kids as good as any mother, and 

all at once it would start in–something bad and awful–something would come 

over her, and it came by slow degrees. Her face would twitch and her lips would 

snarl and her teeth would show. Spit would run out of her mouth and she would 

start out in a low grumbling voice and gradually get to talking as loud as her 

throat could stand it; and her arms would draw up at her sides, then behind 

her back, and swing in all kinds of curves…and she would double over into a 

terrible-looking hunch–and turn into another person. 

–Woody Guthrie, Bound for Glory, 1943 

 

peech represents one of the most complex human activities, as it involves cognitive-linguistic 

processes, motor speech planning, programming, control, and neuromuscular execution. 

The disordered nervous system may manifest in predictable and clinically recognizable 

speech changes. Studying patterns of speech changes with regard to the underlying neuropathology 

is beneficial for an understanding of the anatomical and functional organization of speech 

production, differential diagnosis and localization of a neurological disease, management of a 

speech disability, and tracking responses to therapy. 

Speech analysis has been limited to subjective auditory perceptual assessment or laborious 

manual analysis of recordings for many generations. With the current astounding availability of 

data acquisition tools and computational power, digital signal processing stands at the forefront of 

research in speech pathology. This thesis tackles the main problems of the acoustic analysis of 

speech, which revolve around the applicability of methods on various speech pathologies, 

interpretability of speech features, and modelling of complex speech patterns. The method herein 

described represents one of the first and fundamental steps towards the development of a clinical 

tool for the complex assessment of speech disorders in neurodegenerative diseases. 

S 
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1.1 MOTOR SPEECH DISORDERS 

Speech disorders resulting from impaired motor speech planning, programming, control, or 

neuromuscular execution are called motor speech disorders (Duffy 2013). Motor speech disorders 

can be classified into apraxia and dysarthria.  

Apraxia of speech is characterized by the impaired capacity to plan or program 

sensorimotor commands for directing speech movements (Duffy 2013). Apraxia of speech is 

caused mostly by non-hemorrhagic stroke and less frequently by trauma, neurosurgery, or tumors 

with a lesion in the dominant hemisphere. Although apraxia can result from neurodegeneration, 

the majority of neurodegenerative diseases are rarely or never associated with apraxia of speech 

(Duffy 2013). 

Dysarthria is an umbrella term for speech disorders resulting from poor control and 

coordination of the speech motor system. Speech movements in dysarthria are abnormal in the 

strength, steadiness, range, tone, or accuracy. Dysarthria can be categorized into several types 

based on common perceptual characteristics, yielding implications for the localization of a lesion. 

A variety of causes can lead to dysarthria, including a neurodegenerative disease or brain injury 

with traumatic, metabolic, or toxic origin. Table 1 provides a brief overview of dysarthria 

categories, their lesions, distinguishing speech characteristics, and associative neurodegenerative 

disorder. 

1.2 SELECTED DISEASES AND PRECURSORS 

1.2.1 Parkinson’s disease 

Idiopathic Parkinson’s disease (PD) is characterized by a progressive loss of dopaminergic neurons 

in the substantia nigra pars compacta. The resulting imbalance of dopamine and acetylcholine 

disturbs the function of the basal ganglia, which participates in the planning, regulation, and 

execution of movements. Clinical symptoms, include tremors, rigidity, bradykinesia, and postural 

instability, manifest when more than 40-60% of the dopaminergic neurons have died (Fearnley 

and Lees 1991). Approximately 70-90% of PD patients develop a multidimensional speech 

impairment called hypokinetic dysarthria (Logemann et al. 1978, Ho et al. 1998). Hypokinetic 

dysarthria manifests typically in the imprecise articulation of consonants and vowels, 

monoloudness, monopitch, inappropriate silences and rushes of speech, dysrhythmia, reduced 

vocal loudness, and harsh or breathy vocal quality.  

1.2.2 Atypical parkinsonian syndromes 

Atypical parkinsonian syndromes (APSs) are progressive neurodegenerative disorders that involve 

various neural systems in addition to the substantia nigra. Their manifestations include 

parkinsonian symptoms plus characteristic clinical signs; hence, APS is also called Parkinson’s plus 

syndrome. The characteristic representatives of APS are multiple system atrophy (MSA) and 

progressive supranuclear palsy (PSP). MSA causes degeneration in the substantia nigra, striatum, 

inferior olivary nucleus, and cerebellum. Common symptoms of MSA include difficulties in 

coordinating movement and balance, postural or orthostatic hypotension, incontinence, 

impotence, loss of sweating, dry mouth, and vocal cord paralysis. PSP affects neurons and glial 
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cells in the basal ganglia, brainstem, cerebral cortex, spinal cord, and dentate nucleus. Patients with 

PSP suffer from a loss of balance while walking; an inability to aim their eyes properly; stiffness; 

sleep disturbances; depression and anxiety; loss of interest in pleasurable activities; impulsive 

behaviors, including laughing or crying for no reason; and problems with speech and swallowing. 

The pattern of symptoms may vary between individuals, making a diagnosis of APS difficult. APS 

has a generally reduced response to dopaminergic therapy and a more rapid progression, with early 

development of early-onset postural instability. Speech in PSP and MSA is affected by mixed 

dysarthria with various combinations of hypokinetic, spastic, and ataxic components (Kluin et al. 

1993, 1996). Excess pitch, reduced intonation variability, reduced maximum phonation time, 

reduced speech rate, and substantial prolongation of pauses are evidenced in speech affected by 

PSP (Skodda et al. 2011, Sachin et al. 2008, Saxena et al. 2014). Kim et al. (2010) described speech 

in MSA as slow and effortful with a strained-strangled vocal quality. 

1.2.3 Rapid eye movement sleep behavior disorder 

Idiopathic rapid eye movement sleep behavior disorder (RBD) is parasomnia characterized by 

motor behavior in response to dream content due to loss of muscle atonia during REM sleep. In 

recent years, clinical researchers have developed a consensus on the association of RBD and a high 

risk of alpha-synucleinopathy, particularly PD or dementia with Lewy bodies, and less frequently 

with MSA (Schenck et al. 1996, Iranzo et al. 2006, Postuma et al. 2009). Iranzo et al. (2014) 

estimated the risk of developing a neurodegenerative disorder at 33.1% at five years, 75.7% at 10 

years, and 90.9% at 14 years after diagnosis of RBD. Subtle markers of neurodegeneration, such 

as reduced color discrimination and olfactory impairment, can be observed in RBD before clinical 

symptoms of neurodegeneration emerge (Postuma et al. 2009). A survey of the speech 

abnormalities in RBD may yield early speech markers of neurodegeneration.  

1.2.4 Huntington’s disease 

Huntington’s disease (HD) is a predominantly inherited neurodegenerative disorder with a 

widespread neural loss of both white and grey matter. The broad impact of HD leads to mobility, 

cognitive, and psychiatric disorders. Symptoms may vary from person to person and stages of the 

disease. Patients with HD suffer from involuntary, random, jerky movements called chorea; 

diminished coordination; difficulty in walking and swallowing; speech disorders; problems with 

concentration, planning, making decisions, and recall; depression; apathy; irritability; anxiety; and 

obsessive behavior. Symptoms typically develop in middle age, but the disease may onset in a 

juvenile form with rapid progression or late with slower progression. Involuntary, unpredictable 

movements may affect any speech dimension, causing the typical characteristics of hyperkinetic 

dysarthria represented by intermittent hypernasality and nasal emissions, brief speech arrests, 

irregular articulatory breakdowns, articulatory imprecision, excess loudness variation, sudden 

forced respiration, constant or varying strained-harsh voice quality, voice stoppages, and abnormal 

flows of speech (Duffy 2013).  

1.2.5 Multiple sclerosis 

Multiple sclerosis (MS) a chronic immune-mediated disease of the central nervous system. The 

pathogenesis of MS is not well understood. Although immune-mediated inflammation is assumed 

to be the primary cause of damage in relapsing-remitting multiple sclerosis, neurodegeneration 
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seems to be major contributor to irreversible neurological disability in progressive multiple 

sclerosis (Trap and Nave 2008, Ontaneda et al. 2017). Various motor, sensory, visual, and 

autonomic systems can be disturbed and any symptoms and signs of central nervous system issues 

can be present in MS, including numbness, weakness, vertigo, clumsiness and poor balance, 

cognitive impairment, emotional lability, paroxysmal symptoms, stiffness, painful spasms, 

impaired swallowing, speech disorder, diplopia, oscillopsia, painful loss of vision, constipation, and 

erectile dysfunction (Compston and Coles 2008). Speech disorder in MS can resemble almost any 

single dysarthria or a combination of the various types (Duffy 2013). Therefore, dysarthria in MS 

is not specified, despite speech disorder in MS manifesting most commonly as mixed dysarthria 

with spastic and ataxic components. 

1.2.6 Cerebellar ataxia 

Cerebellar ataxia (CA) is a term for ataxia caused by a dysfunctional cerebellum. Stroke; tumor; 

intoxication; poisoning, typically by ethanol; degeneration; and many other causes may lead to CA. 

Degeneration of the cerebellum can be idiopathic or hereditary. Multiple types of CA can be 

categorized based on specific symptoms and genetic markers. Hereditary CAs are classified based 

on the mode of inheritance (autosomal dominant, autosomal recessive, X-linked, or 

mitochondrial) and gene. The majority of autosomal dominant CAs are referred to as 

spinocerebellar ataxias (SCAs), as they also involve afferent pathways. Patients with CA suffer 

from a lack of voluntary coordination of muscle movements, which is called ataxia. The most 

common clinical symptom is an uncoordinated gait or gait ataxia (Rossi et al. 2013). Less frequent 

symptoms represented by unspecified ataxia are dysarthria dizziness, diplopia, visual impairment, 

vomiting, chorea-dyskinesia, seizures, limb ataxia, intention or postural tremor, and Parkinsonism 

may be observed in various types of CA (Rossi et al. 2013). Inaccurate articulation, excess and 

equal stress, prolonged phonemes and intervals, harsh voice, alteration in speech rhythm, reduced 

speech rate, increased duration and variability of speech intervals, and increased vocal instability 

have been reported in CA (Darley et al. 1969B, Brendel et al. 2015, Skodda et al. 2013, Schalling 

et al. 2007, Schalling and Hartelius 2013). Speech disorder in CA gives the impression of slow and 

imprecise speech with a “drunken” character (Duffy 2013). Although various speech abnormalities 

present in other dysarthrias may be present in CA due to neurological impairment extending 

beyond the cerebellum, speech symptoms in CA resemble predominantly ataxic dysarthria (Duffy 

2013). 

1.3 EXAMINATION OF DYSARTHRIA 

The clinical assessment of dysarthria is described briefly here in order to explain the purpose of 

an acoustic analysis in a clinical context. Generally, the examination procedure aims to describe 

the speech disorder, establish the diagnostic possibilities and final diagnosis, establish implications 

for localization, make a disease diagnosis, recommend management, and specify the severity of the 

speech disorder (Duffy 2013).  

First, the examiner characterizes the features of the speech disorder. Non-speech oral 

function is examined in terms of strength, symmetry, range, tone, steadiness, and accuracy of 

movements. Size and shape of articulators are also observed. The face, jaw, tongue, velopharynx, 

and larynx, plus respiration, reflexes, and volitional vs. automatic / overlearned responses of non-

speech muscles are all subject to analysis. Subsequently, the examiner instructs the patient to 
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perform various speech tasks and describes the speech disorder by using defined auditory-

perceptual characteristics. The most widely used system for auditory-perceptual characterization 

of dysarthria was established by Darley, Aronson, and Brown (1969A, 1969B), hence it is referred 

to as the DAB system. The DAB uses 38 speech dimensions grouped into pitch, loudness, voice 

quality, resonance, respiration, prosody, and articulation and rated on a 7-point scale. The DAB  

Dysarthria Lesion (deficit) Speech characteristics Associative neurodegenerative 
disorder 

Ataxic Cerebellum or its pathways 
(incoordination) 

Excess and equal stress, irregular articulatory 
breakdowns, irregular AMRs, distorted 
vowels, excess loudness variation, prolonged 
phonemes, telescoping of syllables, slow rate, 
slow and irregular AMRs 

Cerebellar ataxia, a 
component of mixed 
dysarthria in Friedreich’s 
ataxia, multiple system 
atrophy, and progressive 
supranuclear palsy. 

Flaccid Cranial or spinal nerves or lower 
motor neuron system 
 (weakness) 
 

Hypernasality, breathiness, diplophonia, 
nasal emission (audible), audible inspiration 
(stridor), short phrases, rapid deterioration 
and recovery with rest, speaking on 
inhalation, pitch breaks, monopitch, 
monoloudness, reduced loudness 

Typically as a component of 
mixed dysarthria in 
amyotrophic lateral sclerosis 

Spastic Upper motor neuron 
(spasticity) 

Harshness, low pitch, slow rate, strained-
strangled quality, pitch breaks, slow and 
irregular AMRs, hypernasality, short phrases, 
excess and equal stress, monopitch, 
monoloudness, intermittent breathy/aphonic 
segments 

Primary lateral sclerosis, a 
component of mixed 
dysarthria in multiple sclerosis, 
progressive supranuclear 
palsy, amyotrophic lateral 
sclerosis 

Hypokinetic Basal ganglia circuit: substantia 
nigra pars compacta 
(rigidity, reduced range of 
movements) 
 

Monopitch, reduced stress, monoloudness, 
reduced loudness, inappropriate silences, 
short rushes of speech, variable rate, 
increased rate in segments, increased overall 
rate, rapid, “blurred” AMRs, repeated 
phonemes, palilalia, hypernasality, 
breathiness, echolalia 

Parkinson’s disease, 
component of dysarthria in 
multiple system atrophy, 
progressive supranuclear 
palsy 

Hyperkinetic Basal ganglia circuit: putamen or 
caudate nucleus 
(involuntary movements) 
 

Irregular AMRS, distorted vowels, excess 
loudness variation, prolonged intervals, 
sudden forced inspiration/expiration, voice 
stoppages/arrests, transient breathiness, 
voice tremor, myoclonic vowel prolongation, 
intermittent hypernasality, slow and irregular 
AMRs, marked deterioration with increased 
rate, inappropriate vocal noises, coprolalia, 
intermittent strained voice/arrests, 
intermittent breathy/aphonic segments, 
hypernasality, audible inspirations (stridor), 
short phrases, harshness, low pitch, slow rate, 
strained-strangled voice quality, irregular 
articulatory breakdowns, prolonged 
phonemes, monopitch, inappropriate 
silences, variable rate, echolalia, inconsistent 
articulatory errors 

Huntington’s disease, dystonia 
musculorum deformans 

Unilateral 
upper motor 
neuron 

Unilateral upper motor neuron 
system (weakness, incoordination, 
spasticity) 

Slow rate, irregular articulatory breakdowns, 
irregular AMRs, reduced loudness 

N/A 

Mixed Combination of the above 
 

Combination of the above Multiple sclerosis, Friedreich’s 
ataxia, progressive 
supranuclear palsy, multiple 
system atrophy, amyotrophic 
lateral sclerosis 

Undetermined N/A Ambiguous pattern of speech characteristics N/A 

Table 1: Summary of dysarthria categories.  
Speech characteristics were adopted from Duffy (2013). Distinguishing speech characteristics are typed using normal font. Non-
distinguishing speech characteristics are emphasized in italics. The association between dysarthria and neurodegenerative disease was 
generalized and restricted to common clinical findings.  
Abbreviations: AMRs = alternating motion rates, N/A = not applicable. 
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has shown that patterns in auditory-perceptual speech dimensions differ depending on the 

underlying neuropathology and introduced categorisation of dysarthria based on auditory-

perceptual speech characteristics. Auditory-perceptual characteristics play a prominent role in the 

clinical assessment of dysarthria. Perceived intelligibility of speech may serve as an index of the 

speaker’s ability to communicate. In addition to auditory perceptual characteristics, speech 

pathologists may employ visual imaging, physiologic, or acoustic methods. Visual imaging 

methods, such as videofluoroscopy, nasoendoscopy, laryngoscopy, videostroboscopy, and 

videokymography, are the most commonly used instrumentation techniques. Visual imaging can 

contribute to an evaluation of swallowing and velopharyngeal and laryngeal function. Results of 

imaging techniques can be interpreted visually in the context of auditory perception. Physiologic 

methods, such as electromyography, aerodynamic measures, and electroglottography and acoustic 

measures, provide mainly quantitative data, which may cause some inconveniences in 

interpretation. Speech pathologists use instrumentation methods rather exceptionally due to the 

lack of widely accepted standards, methods and their parameters, and normative data (Till 1995, 

Duffy 2013). Moreover, the majority of speech pathologists may not be armed with the complex 

knowledge required for analysis and interpretation or may not be convinced about possible 

benefits (Gerratt et al. 1991). Although acoustic analysis involves the most convenient 

instrumentation for the automated assessment of speech disorders, its extensive application in 

clinical practice is hindered by the frequent correlation of acoustic characteristics with age, sexual 

dimorphism, and language. Interpreting a large set of raw acoustic features can be an unbearable 

problem for experts in digital signal processing and even more so for speech pathologists. No such 

application for acoustic speech analysis which respects the educational background of speech 

pathologists and the complexity of speech patterns has been provided as of the writing of this 

thesis. In summary, the existing instrumentation techniques only serve to complement the use of 

auditory-perceptual characteristics.  

Diagnostic possibilities are inferred from a comprehensive description of speech. The 

clinician can establish the most reasonable diagnosis by considering if the problem is neurologic, 

organic, psychogenic, or even abnormal at all. Lesion loci can be derived from diagnosed dysarthria 

only when speech characteristics support the association unambiguously. Classification of 

dysarthria in the context of other neurological symptoms is common at least in the clinical practice 

of neurologists (Fonville et al. 2008). Clinicians may also consider the possible incompatibility of 

the dysarthria category with the neurologic diagnosis. Generally, a diagnosis of dysarthria requires 

a holistic approach and cannot rely solely on auditory perceptions. For illustration, Zyski and 

Weisinger (1987) asked experienced clinicians as well as graduate students to classify dysarthria 

from 28 speech recordings representing all of the categories in the DAB. The reported accuracy 

of 56% in discriminating dysarthria types was not significantly different between experienced 

clinicians and students (Zyski and Weisinger 1987). Another study by Fonville et al. (2008) focused 

on neurologists’ ability to discriminate dysarthrias demonstrated an even lower accuracy of 35%, 

with no significant difference between experienced clinicians and students reported. Van der 

Graaff et al. (2009) asked eight neurologists, eight residents, and eight speech therapists to rate 

speech samples from 18 patients with flaccid, spastic, ataxic, hypokinetic, hyperkinetic, and mixed 

dysarthria and four healthy controls (HC). Neurologists showed a 40%, residents a 41%, and 

speech therapists a 37% accuracy in the identification of dysarthria (Van der Graaff et al. 2009). 

Listeners’ abilities to discriminate dysarthrias were very low (71%), even when the possible 

diagnoses were restricted to hypokinetic, spastic, and ataxic dysarthria (Auzou et al. 2000). When 

the auditory-perception characteristics from which the dysarthria categories were derived are not 

sufficient for a diagnosis (Zyski and Weisinger 1987), no other single approach may work alone. 
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Finally, instrumentation techniques, such as the acoustic analysis presented in this thesis, are meant 

to extend the diagnostic capabilities of the clinician, not as a substitute for his or her experience 

and common sense.  

1.4 ON THE DECOMPOSITION OF SPEECH 

PROCESSES 

Speech is produced by the interaction of various speech subsystems, including timing, articulation, 

resonance, phonation, and respiration. For illustration, respiratory flow modulated by glottal pulses 

convolutes with resonances of the vocal tract.  The interaction of subsystems makes localization 

of the breakdown in the production of speech difficult. The trained ear of a speech-language 

pathologist can identify a broad spectrum of speech characteristics that can be linked to certain 

speech movements or dimensions. Acoustic analysis of speech aims to do the same thing via the 

segmentation of a digital speech signal, followed by the computation of interpretable speech 

features. Segmentation determines the temporal position of a speech event, and speech features 

describe its quality. In summary, both auditory-perceptual assessment and acoustic speech analysis 

decompose speech processes into features that describe elementary tendencies of speech 

movements in an understandable way. 

Despite the incredible abilities of humans in processing acoustic and visual information, 

speech pathologists commonly employ various speech tasks that endeavor to isolate specific 

speech movements.  Indeed, specific aspects of speech can be inspected in more detail by using 

specific speech tasks because speech tasks can diminish the possible influence of other processes 

of speech production and cognitive deficits. Speech tasks also allow speech pathologists to observe 

specific aspects of speech for longer periods of time or through multiple repetitions. 

Connected speech highlights the most natural and challenging cooperation between all of the 

subsystems of speech. A monologue on a given topic or the reading of a standardized text is used 

frequently for the assessment of connected speech. Basic timing aspects, such as rhythm stability 

and rhythm acceleration, can be examined using a rhythm task that requires the syllable /Pa/ to 

be articulate in a steady rhythm. Articulatory performance is commonly evaluated via antagonistic 

movements,  such as the use of the syllables /Pa/ /Ta/ /Ka/ in quick succession, which is called 

the diadochokinetic test. The quality of articulation can be rated via individual words or sentences. 

Phonatory characteristics are usually measured via sustained vowels. Several other aspects, such as 

lexical and prosodic stress, are assessed via phonetically-balanced texts or rhymes. Many other 

tasks that are beyond the scope of this study can be exploited in the examination of specific aspects 

of dysarthria. The list of tasks used in this thesis is limited to an examination of connected speech 

via the performance of a monologue and reading of a text, the rhythm test, the diadochokinetic 

test, and inspection of sustained vowels, representing a tradeoff between the number of tasks 

covered and the complexness of the assessment for the analyzed set of dysarthrias. 

1.5 AUTOMATED ANALYSIS OF DYSARTHRIA 

The term “automated analysis of dysarthria” denotes a methodology for the enumeration of 

interpretable speech symptoms and/or speech patterns which does not require manual 

intervention. Theoretically, any instrumentation method could provide a foundation for an 

automated analysis, including acoustic measures, physiologic measures, and visual imaging. 
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Nevertheless, acoustic measurement is the primary method used for automation due to the 

following reasons: All of the subsystems of speech can be captured by one non-invasive and cost-

effective measurement of acoustic waves. Unlike physiological measures and visual imaging that 

monitor the process of speech production via, for example, mechanical, biomechanical, or neural 

activity; acoustic data describe the final product of speech movements that matter most for speech 

therapy. Finally, differential speech patterns could be hypothetically detected by acoustic measures, 

since they are defined by auditory perceptual features. It should also be noted that acoustic analysis 

involves time series analyses and a very complicated analysis of speech patterns, both of which 

point to automation because manual analysis is typically laborious or may be principally 

unbearable. 

Despite the long history of the acoustic analysis of speech, which began in 1902 with The 

Elements of Experimental Phonetics by Scripture and took on a new dimension with the 

technological achievements of the ‘90s, the acoustic analysis of dysarthria is still subject to research 

and clinical applications of acoustic analysis are very limited. The most vital developments in 

acoustic analysis are recent, having been facilitated by easy access to data collection technologies, 

increased computational power, and increased interest on the part of engineers in speech analysis. 

Current state-of-the-art acoustic analysis of dysarthria represents a multidisciplinary approach that 

bridges the disciplines of digital signal processing, machine learning, speech pathology, and 

neurology. Although acoustic methods are increasingly popular among researchers, the gap 

between the disciplines has prevented the implementation of results in clinical practice. Clinicians 

demand knowledge-driven models with universal application, but engineers offer mostly data-

driven models that have rarely been validated for more than a single category of dysarthria. 

Analytical methods are usually specific not only to speech task, but also to dysarthria category. For 

these reasons, the state-of-the-art acoustic methods documented here focus only on the speech 

tasks and categories of dysarthria surveyed in the previous sections.  

1.5.1 Acoustic analysis 

CONNECTED SPEECH 

Segmentation 

Although the segmentation of connected speech has been subject of study by signal processing 

engineers, the assessment of disordered speech requires more precise segmentation than state-of-

the-art voice activity detectors currently provide. The segmentation of connected speech in 

dysarthria is difficult due to the increased perturbation of voiced intervals and pauses, non-speech 

sounds, decreased energy in unvoiced speech, loud respirations, and imprecise articulation. The 

only method in use for the segmentation of connected speech is limited to the detection of pauses 

and speech intervals (Rosen et al. 2010).  

Speech features 

Connected speech represents a natural task for the examination of prosody. Not surprisingly, 

intonation variability as well as rate and pause characteristics are commonly measured using 

connected speech. Regarding the complexity of connected speech, automated prosodic measures 

are limited by the lack of technologies available for sophisticated segmentation and subsequent 

qualitative analysis, such as detection of pitch or spectral analysis. Evaluation of pitch still relies 

on pitch detectors developed for healthy speech or ensembles of detectors (Tsanas et al. 2014, 

Berisha et al. 2017). The assessments of speech rate (Martens et al. 2015, Jiao et al. 2015) and the  
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basic temporal characteristics of short, standardized sentences (Bandini et al. 2015) have been 

automated.  

In addition to prosody, any other speech dimension can be examined in connected speech. 

Assessment of articulatory features is limited currently to the automated assessment of vowel space 

area for connected speech proposed by Sandoval et al. (2013). Unfortunately, the method has been 

evaluated only on healthy speakers. Cross-linguistic metrics based on manual segmentation were 

analyzed in studies by Liss (2009) and Lowit (2014), but both studies discovered no difference 

between the HC and dysarthria groups, possibly due to the small sample of patients.  

Analysis of phonation is rarely performed because, currently, phonatory features are 

represented  in the quantitative analysis of such items as perturbation characteristics, which can be 

measured on sustained vowels more conveniently. Likewise, analysis of resonance is measured on 

sustained vowels since the analysis of resonance is technically challenging in situations in which 

articulation varies. 

Although respiration is placed first in the hierarchy of items requiring clinical attention and 

treatment (Dworkin 1991), no comprehensive automated acoustic analysis of respiratory patterns 

in the connected speech has been published. Moreover, respiratory features are analyzed in 

connected speech, which is one of the tasks used in therapy for and the tracking of the respiratory 

subsystem (Dworkin 1991). Respiration in connected speech can hardly be analyzed by common 

measurements, such as a spirometer, because the physical measurement of respiration impedes the 

ability to speak. However, a microphone located close to the patient’s mouth can capture 

respiration patterns very well without any additional discomfort to the patient. 

In summary, the complex assessment of connected speech with regard to prosody, 

phonation, articulation, and respiration represents a fundamental source of information, as it 

represents the most natural speech task that can be possibly captured in the form of daily 

conversations by something as simple as a background app on a smartphone. Regrettably, no 

methodology for the complex assessment of connected speech had yet been made available at the 

time of this writing (Hlavnička et al. 2017A). 

RHYTHM TEST 

Segmentation 

Identification of individual syllables can be very tricky despite the simplicity of the task. Non-

speech noises, such as incomplete occlusion, tongue clicks, and excessive inspirations, can occur 

frequently in dysarthric speech. Additionally, voicing may continue between syllables, and syllables 

themselves may vary in loudness as well as spectrum. Segmentation of the rhythm task has been 

based solely on laborious, manual hand labeling up to the release date of the algorithm developed 

by the author of this thesis (Rusz et al. 2015A).  

Speech features 

Pace, as represented by the location of detected syllables, can be evaluated in terms of rate, 

acceleration, and instability. The clinical relevance of the pace rate calculated as the number of 

syllables per second is limited when considering the facts that the speaker is allowed to choose his 

own pace and no dysarthria  influences specifically a preference for a fast or slow rhythm (Duffy 

2013). Although pace acceleration can be observed exclusively in hypokinetic dysarthria and may 

influence the measured pace rate, increased self-pacing cannot be inferred. Acceleration of pace 

(PA) can be measured as the difference between the average intervals between the syllables of the 



 
Introduction  Automated analysis of dysarthria 

- 10 - 
 

sequences 5-12 (avIntDur5-12) and 13-20 (avIntDur13-20), normalized by the reference determined 

as the average intervals between syllables of the sequence 1-4 (avIntDur1-4) (Skodda et al. 2010): 

Skodda et al. (2010) associated values of PA higher than 1 with acceleration of speech. The authors 

proposed to measure pace stability using the coefficient of variation (COV5-20) based on a similar 

principle: 

where sdIntDur5-20 denotes the standard deviation of intervals between syllables of the sequence 

5-20 (Skodda et al. 2010). Evidently, the resulting values of COV5-20 and PA are inversely 

proportional to the speaker’s performance of the first four syllables, quantified as avIntDur1-4. 

Moreover, the evaluation requires the speaker to perform a sequence of at least 20 syllables, which 

may prove to be an overwhelming task for speakers with severe dysarthria. Speech feature 

assessments for rhythm acceleration and instability need to be redefined to increase reliability and 

applicability. 

DIADOCHOKINETIC TEST 

Segmentation 

Assessment of articulatory movements rises and falls on precise detection of burst, voice onset, 

and occlusion of each articulated syllable since speech features are calculated from the location of 

detected articulatory events. Novotný et al. (2014) developed an automated assessment of the 

diadochokinetic test incorporating robust segmentation and a set of speech features. The algorithm 

showed superior accuracy on the datasets for HC and PD. Novotný et al. (2015) continued the 

research and improved the detection accuracy for HD subjects. Unfortunately, further evaluation 

of the recordings of speakers with CA and APS uncovered limitations of the algorithm in terms 

of the detection of poorly articulated bursts, silent syllables, and imperfectly separated syllables. 

More robust detection of voiced intervals and improved detection of bursts is required for the 

applicability of these speech measurements for any clinical population. 

Speech features 

The essential measures of diadochokinesis have a very long history. For illustration, the concept 

of voice onset time, i.e., the time interval between burst and voice onset, came about in the late 

19th century and was fully defined in the ‘60s for the categorization of phonemes (Lisker and 

Abramson 1964). In addition to voice onset time, the syllabic rate, regularity, vowel duration, and 

other locational measures used to describe the performance of the diadochokinetic task can be 

calculated easily using descriptive statistics, such as the mean and standard deviation, when the 

positions of burst, voice onset, and occlusion are known. The precision of these measures is tied 

strongly to the precision of segmentation but can be improved by application of more robust 

estimators, such as the median. Unfortunately, the majority of authors prefer easily defined 

formulas that can be greatly influenced by outliers resulting from misdetections.  

𝑃𝐴 = 100 ∙
𝑎𝑣𝐼𝑛𝑡𝐷𝑢𝑟5−12−𝑎𝑣𝐼𝑛𝑡𝐷𝑢𝑟13−20

𝑎𝑣𝐼𝑛𝑡𝐷𝑢𝑟1−4
. 

 

Equation 1 

 

𝐶𝑂𝑉5−20 = 100 ∙
𝑠𝑑𝐼𝑛𝑡𝐷𝑢𝑟5−20

√16∙𝑎𝑣𝐼𝑛𝑡𝐷𝑢𝑟1−4
, 

 

Equation 2 
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SUSTAINED VOWELS 

Segmentation 

The decision as to whether or not the analyzed interval is voiced precedes any analysis of the 

phonation subsystem, especially in the case of sustained vowels. A variety of voicing determination 

algorithms have been developed throughout history, but the majority of them fall into one of three 

main categories indicated by Hess (1983): threshold analyzing, pattern recognition, or voicing 

determination algorithms combined with pitch determination. Threshold analyzers operate simply 

by testing a level of the parameter that describes voicing. Common parameters used in voicing 

determination are energy, the coefficient of the normalized autocorrelation function, the number 

of zero-crossings, the error in linear prediction, and so forth. The decision as to an interval being 

voiced can be inferred not only from individual independent parameters but also from their 

combination using unsupervised or supervised learning. The decision can also be made by testing 

the periodicity of the estimated pitch, which prevents measurement errors due to the failure of 

voice detection. Additionally, decisions of multiple detectors can be combined to increase the 

reliability of decision further. 

The idea to decide voicing based on the periodicity of the pitch can be traced back to the 

‘60s, when pioneers of digital signal processing recognized the potential of digital vocoders for 

voice transmission (Noll 1967, Sondhi 1968). The purpose of a pitch detector is to identify whether 

the pitch is measurable or not in the analyzed interval. As the quality of the estimate of the pitch 

depends strongly on the ability to distinguish voiced and unvoiced segments, thresholds for the 

voiced decision can be expected to be set high enough for precise measurement of the pitch. 

Accordingly, aberrant vibrations that represent a challenging condition for detection of pitch may 

be considered as unvoiced, although they represent clinically important intervals of phonation. An 

algorithm that would detect intervals of increased perturbation and subharmonics as voiced is 

crucial for subsequent qualitative analysis. Unfortunately, the accuracy of voiced detection in 

pathological speech is marginalized, and the majority of speech analyzers do not provide a detailed 

description of the procedures or enumerated accuracy in such cases. No transparent methodology 

for the voiced/unvoiced decision to be made on the sustained vowels of dysarthric speakers was 

yet available at the time of writing. 

Speech features 

Numerous technologies have been proposed for the acoustic analysis of sustained vowels. Two 

major categories of measurements can be analyzed for this task. The first category consists of 

measurements related to the function of the larynx, including the characteristics of fundamental 

frequency, such as variability or range; perturbation measurements; and measurements of the 

glottal pulse shape. Phonatory measurements are very popular. As an illustration, methods focused 

only on the assessment of voice quality account for more than 500 studies (Buder 2000). Jitter, 

shimmer, and the harmonics-to-noise ratio are the most common perturbation measurements with 

straightforward interpretations. However, these measurements require precise detection of the 

fundamental frequency, which is not an easy task in conditions of severe perturbation, an abnormal 

variation in melody, sudden shifts in pitch, and vocal arrests caused by dysarthria. Additionally, the 

majority of technologies measuring the harmonics-to-noise ratio are based on an autocorrelation 

function that can be influenced strongly by increased jitter and shimmer. Available technologies, 

such as CSpeech (Paul Milenkovic, Madison, Wisconsin, USA), the Computerized Speech 

Laboratory (Kay Elemetrics, Pine Brook, New York, USA), MDVP (Kay Elemetrics, Pine Brook, 

New York, USA), Dr. Speech (TigerDRS, Seattle, Washington, USA), TF32 (Paul Milenkovic, 

Madison, Wisconsin, USA), and PRAAT (Boersma, P. & Weenink 2018), were not designed 
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explicitly for dysarthria or evaluated on a large corpus of dysarthric speakers. Moreover, values 

measured by different methodologies are not comparable even if measured on identical data 

(Bielamowicz et al. 1996). In addition to standard perturbation measurements, the randomness of 

the signal can be quantified in terms of fractal dimensionality (Baken 1990, Little et al. 2007). 

Fractal-based measurements are interesting research instruments that do not require detection of 

the fundamental frequency, but the lack of interpretability impedes their broader application. 

Generally, all well-established phonatory measurements require detection of the fundamental 

frequency. One exception is represented by cepstral peak prominence, which is measured as a 

maximal peak in cepstrum against the trend line and thus, by definition, does not require estimation 

of the fundamental frequency. However, detection of maximal peaks in cepstrum is related 

strongly to the detection of the fundamental frequency (Noll 1967, Hillenbrand and Houde 1996), 

which raises the question as to whether the original definition is too loose.  

Although methods related to the detection of the fundamental frequency are referred to 

in more than 3000 publications (Benesty et al. 2007), no ultimate solution suitable for any situation 

has been discovered yet. Detectors are usually designed to perform well under a specific set of 

circumstance, such as degraded signal quality, increased environmental noise, and the presence of 

multiple speakers. Detectors for dysphonia, including an ensemble of detectors (Tsanas et al. 

2014), were never validated with regard to abnormal vibration regimes. Moreover, the available 

detectors and terminology for a description of dysphonia are related to the fundamental frequency 

(F0) regarding perceived pitch. Perception of F0 can be tricky and subjective when vocal folds 

vibrate with an alternating period, amplitude or both. These aberrant vibrations are called 

subharmonic vibrations. Although subharmonics represent unique phenomena, clinicians can 

categorize this phenomenon into one of three different categories, namely diplophonia, harsh 

voice, or a sudden shift in pitch called pitch break (Weismer 2006). Subharmonics manifest in the 

spectrum as local extremes at an integer fraction of the F0, most frequently F0/2. When alternation 

exceeds a subjective threshold, subharmonics start to mask F0, causing a change of pitch perceived 

as a jump to an octave below (Bergan and Titze 2001). Although speech processing engineers are 

aware of the difference between true fundamental frequency and perceived fundamental 

frequency, no answer to the problem that would respect both speech pathology and signal 

processing has been provided yet. Given the above information, a term (modal F0) that describes 

the F0 corresponding to the modal register of the voice will be introduced in this thesis. Modal F0 

is meant to represent the frequency at which vocal folds would vibrate without alternation. In 

other words, modal F0 reflects vibrations respective to the set-up of laryngeal muscles apart from 

factors that cause subharmonics. Unfortunately, no method for the tracking of modal F0 and the 

detection of subharmonic intervals in dysarthria has been published to date.  

The second category of measurements concern the velopharynx and are related to 

resonance characteristics, such as the measurement of the degree and variability of hypernasality. 

Automated measurements of hypernasality were designed by Novotný et al. (2016). 

1.5.2 Modeling of speech patterns 

Acoustic analysis returns a set of raw values that enumerate speech manifestations. What the values 

of acoustic features measured on one particular speaker mean cannot be inferred from the values 

themselves. Analogous to any other measurement, a model is required to elucidate the trend in 

and severity of a speech feature. When a value is comparable to a statistical model for healthy 

speakers, then the value can be considered to be normal, i.e., no malfunctions or abnormalities 
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indicating underlying pathophysiology are present. Models of single speech features can be 

beneficial for describing individual speech abnormalities, whereas models combining multiple 

speech features can predict overall tendencies, categorization, or a defined rating scale.  

Modeling of a single speech feature is generally marginalized, and authors focus mostly on 

multivariate models for the categorization of a disorder. Although various studies have shown how 

incredibly accurate various technologies can be (Little et al. 2009, Tsanas et al. 2012, Hariharan et 

al. 2014, Orozco-Arroyave et al. 2016, Vaiciukynas 2017), the majority of recently developed 

technologies seem to have limited impact on clinical practice. The reasons for this failure lie not 

only in limited databases but also in the following technical issues.  

First, the majority of authors have proposed algorithms that provide binary classifications 

or, as the authors frequently state, the “diagnosis” or “detection” of neurodegenerative disease vs. 

healthy controls. Such algorithms are predominately based on features selected by brute force from 

an enormous set of descriptors with no hypothetic relation to pathophysiology. An extreme 

example can be found in the work of Vaiciukynas (2017), which analyses 99 speakers using subsets 

of 47,229 descriptors in total. Such a procrustean solution can hardly prove beneficial to any speech 

pathologist interested in reliable evidence for his or her own responsible diagnosis.  

Second, the majority of authors seek complex models, such as a support vector machine 

(SVM) with radial basis function or deep neural networks, in order to reach the highest possible 

accuracies of classification, which raises serious doubts as to whether the classifier aims to 

describes interpretable principles behind speech patterns instead of just constellations of data. For 

illustration, see the first subfigure on the left top of Figure 6 in the publication by Little et al. 

(2009). This classification boundary is placed around just five healthy subjects with considerably 

increased values of a feature called detrended fluctuation analysis (DFA), although increased DFA 

is associated with voice disorder. Generally, the possibility of fitting a model that contradicts 

hypotheses can be expected anytime training is executed by minimizing the error function. Some 

classifiers, such as decision trees, allow one to inspect their consistencies with hypotheses in a 

decision structure, but the majority of classifiers require thorough evaluation via simulated data.  

Furthermore, there is a rising trend in regulating machine learning with the “right to an 

explanation” (Edwards and Veale 2018). A nice example can be found in the General Data 

Protection Regulation act of the European Union, which requires any automated decision-making 

in the European Union to provide “meaningful information about the logic involved” (Parliament 

and Council of the European Union 2016). The implication of the law on machine learning is still 

the subject of ongoing debate, and some authors question its legal status (Goodman and Flaxman 

2016, Wachter et al. 2017). Nevertheless, stricter legislation can be expected in the near future after 

machine learning penetrates society on a deeper level. Regardless of current legislation, clinicians 

may require and demand a more explanatory approach that can be juxtaposed with other outcomes 

of their examinations, such as perceptual findings and the patient’s history and socioeconomic 

status.  

Binary classification of speech patterns can yield valuable information about the complex 

interactions between speech features. However, it should be questioned whether any binary 

decision about speech patterns could benefit a clinician when acoustic analysis is only one of the 

many other descriptors which could be considered for the formulation of a diagnosis (see section 

1.3 EXAMINATION OF DYSARTHRIA, page 4). A binary decision is more likely to induce bias into a 

diagnosis than yield new insight into a speech disorder. Estimation of speech pattern severity 

seems to be more desirable than a diagnostic shortcut.  
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The efforts of the  community of speech processing engineers have been confined mostly to 

mapping speech patterns to intelligibility (Pathological speech sub-challenge, Interspeech 2012) or 

clinical scales, such as the Unified Parkinson’s Disease Rating Scale motor score (UPDRS III; 

Parkinson’s condition sub-challenge, Interspeech 2015) and Frenchay Dysarthria Assessment 

scales (Orozco-Arroyave et al. 2018). Despite the considerable attractiveness of these targets for 

increased objectivity or remote monitoring, assessment of individual speech patterns with regard 

to the lesion or defined category is more relevant clinically, as was demonstrated by DAB. In 

summary, simple and explanatory models that respect sexual dimorphism and age dependency are 

in demand. Currently, no such methodology for modeling the severity of speech deficits described 

by individual speech features and combinations of speech features is available. 

1.6 AIMS AND OBJECTIVES 

This thesis is centered on the automation of the analysis of dysarthria using acoustic signals. 

Automated segmentation and  the calculation of descriptive speech features are the paramount 

aims of the thesis. This thesis is framed as a coherent application that addresses general issues of 

clinical practice, namely, interpretability of values measured by acoustic analysis and modeling of 

speech patterns. The following objectives summarize the scope of the thesis (see Figure 1): 

 Limitations: The thesis specifies the recording process and discusses limitations of the 

proposed methodology with regard to a recording device, the recording process, and 

applicability of the proposed methodology.  

 Acoustic analysis: Development of novel methods for automated analysis of connected 

speech, sustained vowels, rhythm, and the diadochokinetic task regarding segmentation 

and acoustic features represents the essential goal of the thesis since state-of-the-art 

methods do not currently provide a clinically applicable solution with acceptable accuracy 

of detection. 

 Modeling of speech patterns: Modeling of individual acoustic features regarding sexual 

dimorphism and age as well as a new approach for pattern recognition which was designed 

to answer the fundamental limitations of acoustic analysis in clinical settings.  

 Statistical comparison: Comprehensive analysis of individual acoustic features across 

selected groups of diseases, covering patients from the subclinical (RBD) to clinical (PD, 

HD, CA, MS) stages of diseases. 

 Classification experiment: A novel methodology for pattern classification was compared 

with selected state-of-the-art classifiers. Subsequently, incidences of proposed speech 

patterns were estimated. 

 Visualization: The comprehensive report was designed to convey the results of the 

analysis in an intelligible way by exploiting all properties of the proposed modeling of 

speech patterns. The whole methodology, including acoustic analysis and modeling of 

speech patterns, was implemented into a software application that automatically generates 

the report. Although the software was not the key goal of the thesis and no code is 

provided by the thesis, it was crucial for the evaluation of clinical applicability. 

 Experimental use: The methodology was cultivated in cooperation with an experienced 

speech pathologist who tested intensively the software implementation of the proposed 

methodology in clinical practice. 



 
Introduction  Aims and objectives 

- 15 - 
 

 Survey: Feedback was gathered from the clinician in order to evaluate the proposed 

methodology in terms of customer satisfaction, clinical relevance, interpretability of 

provided results, benefits, and limitations. 

 Case study: The application of the proposed methodology was demonstrated using two 

illustrative case studies. Examinations utilizing the proposed methodology were 

accompanied by detailed anamnesis and commentary. 

 

 

 

(A) Definition of the recording process and 
addressing limitations of the proposed 
methodology. (B) Development of automated 
methods for the assessment of selected 
speech tasks. (C) Development of a method for 
analysis and decomposition of speech 
patterns. (D) Statistical evaluation of resulting 
speech features obtained from a large 
database of subjects. (E) Comparison of 
various classification methods and proposed 
modeling of speech patterns. (F) Development 
of a software application that executes the 
analysis and generates an interpretable 
report. (G) Optimization of the methodology 
through experimental use. (H) Evaluation of 
the application by a clinician. (I) 
Demonstration of the final application on 
selected speakers with dysarthria annotated 
with the patient’s history and interpretation of 
the analysis.  
Abbreviations: HC = healthy control, PD = 
Parkinson’s disease, MSA = multiple system 
atrophy, PSP = progressive supranuclear palsy, 
HD = Huntington’s disease, RBD = rapid eye 
movement sleep behavior disorder, MS = 
multiple sclerosis, CA = spinocerebellar ataxia. 

 

  

 

Figure 1: Illustrated objectives of the thesis. 
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2 

METHOD 
 

By the time Bob met him, Guthrie’s voice was slurred by Huntington’s chorea. 

The sound of his breath preceded his words. Instead of clearly singing, for 

example ‘I’m ramblin’ around,’ he would huff, ‘hh-I’m ramblin’ a-hh-round.’ 

Marjorie Guthrie, who later founded the Huntington’s Disease Society and 

became an authority on the illness, believed Bob, as well as the other young 

musicians who visited, mistakenly copied these vocal eccentricities as the 

authentic Guthrie voice. Her daughter Nora says that ‘She was convinced that 

these young guys were picking up these early Huntington’s symptoms … holding 

a note and then kind of trailing off, which was really a lack of control. That 

became the style and the jumping off point for Dylan.’ 

–Howard Sounes, Down the Highway: The Life of Bob Dylan, 2001 

 

he methodology for acoustical assessment is entirely described in this chapter. The clinical 

characteristics of a large database of speakers as well as a detailed definition of  the 

recording process, including technical details and instructions, are presented here  in a 

comprehensive fashion as a product of the fruitful cooperation between the Department of 

Neurology and Centrum of Clinical Neuroscience, First Faculty of Medicine of Charles University 

and Faculty of Electrical Engineering of Czech Technical University in Prague. The recording 

standard used was developed by Jan Rusz and Tereza Tykalová. The database was recorded over 

the course of many years by Jan Rusz, Tereza Tykalová, Michal Novotný, Hana Růžičková, and 

other collaborators, as well as marginally by the author of this thesis. All recorded signals were 

processed digitally via a methodology designed by the author of the thesis, with one exception: the 

hypernasality measures originated in the research by Michal Novotný et al. (2016). Each 

methodology is described in terms of the segmentation and acoustic features accompanied by the 

underlying pathophysiology. A novel approach for the treatment of age dependency and sexual 

dimorphism is then applied to the measured values of the acoustic features. Central tendencies of 

speech were categorized from a new perspective, which was deduced from the functional pathways 

of a speech motor control circuit and classified using a novel approach to information fusion. The 

classification experiment and statistical methods used are also specified in this chapter. Finally, a 

special note on the interpretation and application of acoustic analysis is given here to frame the 

proposed method in a wider clinical context.

T 
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2.1 DATABASE 

The majority of the subjects were recruited originally for previous studies by the Signal Analysis, 

Modeling, and Interpretation group of the Faculty of Electrical Engineering, Czech Technical 

University in Prague. The database was extended by speakers that were not included in previous 

studies or were recorded after a project terminated. Previous studies explored the database in the 

context of a disease or a syndrome, but a comparison of all speakers was never previously 

published due to the incomparable age of onset for various diseases. 

A sample of 570 Czech native speakers was comprised of 42 subjects with idiopathic RBD 

(37 males, 5 females), 32 subjects with early untreated PD (PDU; 22 males, 10 females), 26 subjects 

with treated PD (PDT; 13 males, 13 females), 22 subjects with MSA (10 males, 12 females), 15 

subjects with PSP (9 males, 6 females), 18 subjects with untreated HD (HDU; 6 males, 12 females), 

13 subjects with treated HD (HDT; 8 males, 5 females), 17 subjects with CA (10 males, 7 females), 

and 101 subjects with MS (24 males, 77 females). Additionally, 284 subjects (141 males, 143 

females) with no history of a neurological or communication disorder were included as HC. 

Clinical characteristics are summarized in Table 2. 

All RBD patients were diagnosed by polysomnography according to the International 

Classification of Sleep Disorders diagnostic criteria (American Academy of Sleep Medicine 2014). 

Diagnosis of PD followed the UK Parkinson’s Disease Society Bank Criteria (Hughes et al. 1992).  

Group Age (years) Disease duration (years) Disease severity  # Speech severity χ  

(dominant type of dysarthria) Mean / SD  Mean / SD  Mean / SD  Mean / SD  

  (range) (range) (range) (range) 

HC 54.5 / 17.7 - - - 
(none) (18-89) - - - 
RBD 66.0 / 8.9 5.2 / 3.9 5.1 / 3.4 0.0 / 0.2 
(none) (40-83) (1-16) (0-13) (0-1) 
PDU 65.7 / 8.9 1.5 / 1.0 23.6 / 14.0 0.5 / 0.5 
(hypokinetic) (42-79) (0.5-5) (6-56) (0-1) 

PDT 65.4 / 9.1 7.8 / 3.8 17.8 / 9.2 0.8 / 0.7 
(hypokinetic) (48-82) (1-15) (4-38) (0-2) 

MSA 61.2 / 6.5 3.9 / 1.4 75.2 / 23.9 3.3 / 1.2 
(ataxic-hypokinetic) (45-71) (2-7) (35-123) (1-6) 
PSP 66.9 / 6.8 3.7 / 1.5 71.5 / 27.3 4.0 / 1.4 
(hypokinetic-spastic) (54-84) (2-7) (19-116) (2-6) 
HDU 46.3 / 13.8 5.2 / 3.1 19.8 / 11.0 0.6 / 0.5 
(hyperkinetic) (23-67) (1-13) (3-51) (0-1) 
HDT 50.2 / 14.2 7.0 / 3.4 35.0 / 10.6 0.9 / 0.5 

(hyperkinetic) (30-69) (2-12) (12-54) (0-2) 
CA 56.6 / 12.5 10.0 / 6.6 13.4 / 4.3 1.9 / 1.3 

(ataxic) (34-75) (2-21) (4-22) (0-3) 
MS 43.9 / 11.2 14.1 / 7.7 3.7 / 1.5 0.3 / 0.6 
(ataxic-spastic) (19-74) (2-33) (1-6.5) (0-3) 

Table 2: Clinical characteristics of all groups in the database. 

# Scores on the Unified Parkinson's Disease Rating Scale III (UPDRS III) for RBD, PDU, and PDT (ranging from 0 to 108), Natural history and  

neuroprotection on Parkinson (NNIPPS) for APS (ranging from 0 to 332), Unified Huntington's Disease Rating Scale (UHDRS)  
motor sub-score (ranging from 0 to 124) for HDU and HDT, Scale for the Assessment and Rating of Ataxia (SARA) for CA (ranging from 0 to 40), 
and Expanded Disability Status Scale (EDSS) for MS (ranging from 0 to 10). Higher scores indicate more severe disabilities. 
χ Scores on the UPDRS III item 18 for PD, NNIPPS Bulbar-pseudobulbar signs subscale item 3 for APS, UHDRS dysarthria item for HD, and scores 
examined by speech specialist for CA and MS.  

All scores represent speech motor examination and range from 0 to 4, where 0 represents normal speech, 1 mildly affected speech,  

2 moderately impaired speech (still intelligible), 3 markedly impaired speech (difficult to understand), and 4 unintelligible speech. 
Abbreviations: SD = standard deviation, HC = healthy control, RBD = rapid eye movement sleep behavior disorder, PDU = untreated Parkinson’s 
disease, PDT = treated Parkinson’s disease, MSA = multiple system atrophy, PSP = progressive supranuclear palsy, HDU = untreated Huntington’s 
disease, HDT = treated Huntington’s disease, CA = cerebellar ataxia, MS = multiple sclerosis. 
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MSA was diagnosed by the consensus diagnostic criteria for MSA (Gilman et al. 2008). Cerebellar 

subtype was identified in just two patients with MSA. PSP was diagnosed using the National 

Institute of Neurological Disorders and Stroke and the Society for PSP clinical diagnosis criteria 

(Litvan et al. 1996). Only two patients manifested PSP-parkinsonism, the rest were diagnosed with 

PSP-Richardson syndrome. Diagnosis of HD was confirmed by genetic testing (Huntington Study 

Group 1996). All CA patients were diagnosed based on molecular testing or clinical findings. 

Genetic testing identified SCA in 7 subjects. Other CA subjects were diagnosed with idiopathic 

late-onset cerebellar ataxia based on neuropsychological testing and magnetic resonance imaging. 

Neuropsychological testing included electromyography, electronystagmography, and genetic 

analyses of the various SCA mutations (SCA 1, 2, 3, 6, 7, 14, and 17) and the Friedreich's ataxia 

gene. MS patients were diagnosed with the revised McDonald Criteria (Polman et al. 2011). Eighty-

two patients were diagnosed with relapsing-remitting MS, 4 patients with the clinically isolated 

syndrome, 7 with secondary progressive MS, and 8 primary progressive MS. Only MS patients in 

at least a 30-day relapse-free period were accepted for entry into the database. 

Patients with RBD or PDU had no history of therapy with antiparkinsonian medication. 

Patients with PDT had been medicated for at least 4 weeks with levodopa and a different dopamine 

agonist and were investigated in the ON state1. Patients with APS received various doses of 

levodopa alone or combined with a different dopamine agonist and/or amantadine. Patients with 

HDU had no history of antipsychotic medication. Patients with HDT were treated with 

antipsychotic medication alone or combined with antidepressants. None of the patients reported 

a history of neurological or communication disorders unrelated to their clinical diagnosis or 

underwent speech therapy while participating in the study. 

Disease duration was estimated from the self-reported occurrence of the first motor 

symptoms. Motor function in RBD and PD patients was scored using the UPDRS III (Stebbins 

and Goetz 1998), APS by the Natural History and Neuroprotection in Parkinson Plus Syndromes–

Parkinson Plus Scale (NNIPPS; Payean et al. 2011), HD by the Unified Huntington’s Disease 

Rating Scale (UHDRS; Huntington Study Group 1996), SCA by the Scale for the Assessment and 

Rating of Ataxia (SARA; Schmitz-Hübsch et al. 2006), and MS by the Expanded Disability Status 

Scale (EDSS; Kurtzke 1983). 

The diagnosis for and scoring of motor function was done by a well-trained professional 

neurologist with experience in movement disorders. The perceptual severity of speech in RBD, 

PD, APS, and HD was determined by the speech item on the corresponding clinical scale. The 

severity of the speech problems in CA and MS was rated perceptually by the speech-language 

pathologist on a coarse scale ranging from none, mild, moderate to severe, according to Yorskston 

(1995).  

All subjects provided informed consent. All studies associated with the database were 

approved by the Ethics Committee of the General University Hospital in Prague, Czech Republic. 

2.2 RECORDING PROCESS 

Acoustic signals were recorded in a quiet room with low ambient noise using a headset condenser 

microphone with linear frequency characteristics (Beyerdynamic Opus 55, Heilbronn, Germany). 

The microphone was placed approximately 5 cm from the mouth. The signal of the microphone 

                                                 
1 The ON state refers to a period when medication suppress the symptoms of PD effectively. 
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was sampled at 48 kHz with a 16-bit resolution and stored in waveform audio file format via 

recorder (9Edirol R-09HR, Roland, Shizuoka, Japan). Each participant was recorded in a single 

session. Each speaker was instructed to perform the following speech tasks: 

 Rhythm: repeat the syllable /Pa/ at least 20 times at a comfortable, self-determined, and 

steady pace without acceleration or deceleration.  

 Diadochokinetic task: repeat the syllables /Pa/ /Ta/ /Ka/ in one breath. Repetition 

should be performed at least seven times as rapidly, steadily, and accurately as possible. 

 Sustained phonation of vowel /A/: perform the vowel /A/ for as long and steadily as 

possible per one breath using the modal register. 

 Sustained phonation of vowel /I/: perform the vowel /I/ for as long and steadily as 

possible per one breath using the modal register. 

 Reading passage: read the standardized text of 80 words. 

 Monologue: speak about his or her speech interests, job, family, or current activities for 

approximately 90 seconds in duration. 

All tasks except the monologue were performed twice. The values of speech features were 

averaged across all repetitions of the task in order to reduce the error of measurement. Each task 

was thus described by a single value for each individual speech feature.  

2.3 ACOUSTIC ANALYSIS 

2.3.1 Sustained vowels 

SEGMENTATION 

The signal was decimated to 8 kHz and analyzed in a sliding window 75 milliseconds in length and  

a 5 millisecond step with hamming weighting. Each position of the window was described by the 

power of the signal (PWR), maximal peak in the autocorrelation function (MPAF), and the zero-

crossings rate of the autocorrelation function (ZCR; see section 2.3.3 CONNECTED SPEECH, 

SEQUENTIAL SEPARATION, page 32). All values of PWR were normalized by the maximal PWR of 

the signal and expressed using a logarithmic scale. The first 10% of the signal was not included in 

the calculation of the maximal PWR to prevent bias due to highly individual PWRs at the onset of 

phonation. The autocorrelation function was corrected by the autocorrelation function of the 

hamming window (Boersma 1993) and normalized. Only positive lags of the autocorrelation 

function corresponding to a frequency range from 50 Hz to 500 Hz were processed further. The 

MPAF was determined as the maximal value of the autocorrelation function. The ZCR was 

calculated as the zero-crossing rate of the autocorrelation function and expressed as a frequency. 

The signal was labeled as voiced for every position of the window for which the PWR was 

higher than -50 dB, the MPAF was higher than 0.24, or the value of the ZCR was within a range 

from 50 to 500. The heuristic was derived from the typical dynamic range described by the PWR, 

the minimal harmonics-to-noise ratio of -10 dB, and the F0 ranging from 50 to 500 Hz. Logical 

disjunction was preferred in the decision process to compensate for the variable quality of 

pathological voices. All voiced intervals with a PWR lower than -80dB were rejected. Voiced 

intervals shorter than 100 milliseconds were rejected, as well, because the transient action of vocal 

folds is not suitable for further analysis. The algorithm described above was developed by the 

author of this thesis (Hlavnička et al. 2019). 
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ANALYSIS OF THE MODAL AND SUBHARMONIC VIBRATIONS OF VOCAL FOLDS 

The vibrations of the vocal folds were examined in voiced intervals of speech using the tracking 

of modal F0 and the analysis of the harmonic series for modal F0 and subharmonics devised by 

Hlavnička et al. (2019). The process of analysis is illustrated in Figure 2.  

Statistical modelling of modal F0 

A statistical model of modal F0 was introduced in order to provide support for the tracking of 

modal F0 when both modal F0 and its fractions are present during subharmonic vibrations. The 

model assumes a normal distribution for modal F0 as described by its mean and standard deviation. 

The model was updated for varying fundamental frequencies using a Kalman filter.  

The model of modal F0 needed to be initiated for prior measurement and the proper setting 

of parameters that define the behaviour of the Kalman filter. The initial model was estimated by 

the following process. The signal was resampled to 3 kHz and analysed in a sliding window 75 

milliseconds in length and a 7.5 milliseconds step with Gaussian weighting. Real cepstrum was 

performed using a fast Fourier transformation (FFT) with 4096 samples. Only cepstrum 

corresponding to the frequency range from 50 to 500 Hz was analyzed. Each position of the 

analysing window was described via the value and location of the maximal peak in cepstrum. Only 

peaks with a value higher than the 90th percentile of all values were accepted, as they represent 

phonation with high quality and thus can be associated with modal voice. The location of the 

selected peaks was recalculated to frequency. The mean and standard deviation of the initial F0 

model were determined by the median and median absolute deviation, respectively, of the 

frequencies of selected peaks. The median absolute deviation was rescaled to be a quantile of the 

standard deviation. The standard deviation of the F0 model was limited to be always higher than 

10 Hz due to numerical problems with the representation of small probabilities of outlying values. 

Detection of modal F0 

The signal was resampled to 3 kHz and processed in windows corresponding to 10 periods of the 

initial model of modal F0. The step of the sliding window was set to be 10% of window length. 

Gaussian weighting with a length of six standard deviations was applied to increase the resolution 

of the Gaussian interpolation in further harmonic analysis (Gasior and Gonzales 2004). Longer 

analysing windows do not deteriorate the temporal resolution and should be preferred due to the 

rapid tapering of the Gaussian window function. The windowed signal was zero-padded to the 

length of 4096 samples, and the FFT was calculated for each position of the analysing window. 

The single-sided amplitude spectrum was normalized to a unity sum. Local extremes were localised 

within the spectrum. The minimal distance between local minims or local maxims was conditioned 

to 25 Hz. Less extreme values violating the condition were discarded. The location and amplitudes 

of local extremes were refined via Gaussian interpolation (Gasior and Gonzales 2004). Local 

maxims with prominence higher than 5 dB were selected as candidates for modal F0.  

Occasionally, a candidate for modal F0 can be too noisy to be accepted or may be 

completely missing. Therefore, additional candidates for modal F0 were reconstructed from a 

weighted frequency histogram of seven harmonics (Schroeder 1968). Weights of the harmonics 

were set accordingly to the inverse of the harmonic number, e.g.,  the weight of the fifth harmonic 

was 1/5. The following conditions were established to prevent inflation of the fractions of even-

order harmonics. All entries with these conditions were rejected. The set of candidates for modal 

F0 was extended by a new candidate only when the total weight of a candidate was higher than 

0.75, when at least 30% of the harmonics constituting an additional candidate for modal F0 were 
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odd, and when the candidate was located more than half an octave from other, already accepted, 

candidates for modal F0. 

Only candidates ranging from 50 to 500 Hz were accepted for further analysis. The 

harmonic series up to the 7th harmonic was calculated for each candidate. Local extremes were 

matched to harmonic series with a tolerance of less than one semitone. Extremes out of tolerance 

were not accepted. The amplitude of matched local minims was negated, emphasizing the 

harmonic structure constituted by the maxims of spectral peaks and minims in between. Each 

candidate was described by the probability calculated as the mean amplitude of the extremes 

matched to its harmonic series. The probabilities of candidates were then compared with the 

probability model for modal F0. Modal F0 was selected from the candidates as the one with 

maximal likelihood. 

Analysis of subharmonics 

Subharmonics were analysed in each position of the analysing window used for the detection of 

modal F0. The harmonic series F0/2 was computed from the modal F0 detected in the position of 

the analysing window. The harmonic series was then described using the subharmonic-to-

harmonic ratio (SHR), calculated as a ratio of even multiples of F0/2 and odd multiples of F0/2 

(Sun and Xu 2002) via the following equation: 

where A is the amplitude of a given frequency obtained by the Fourier transform, F0 is the detected 

modal fundamental frequency, i is index of harmonic, and N represents the maximal number of 

harmonics. The proposed method analysed series up to seven harmonics. Each amplitude of a 

given frequency was estimated as the amplitude of the nearest local extrema in the amplitude 

spectrum refined using Gaussian interpolation (Gasior and Gonzales 2004). Only matches in 

tolerance of less than one semitone were accepted. The amplitudes of the rejected matches were 

set to zero, and the sign of the local minim was set to negative. This heuristic compensates for the 

possible influence of perturbation. Subharmonics were identified when the SHR exceeded the 

critical value of 0.1, determined by the perceptual experiments of Bergan and Titze (2001). 

Adaptation of a statistical model for modal F0 

The variation in modal F0 was modeled as a linear system of the first order corrupted by stationary 

Gaussian noise. We assume that xt, representing modal F0, relates to the previous state xt-1 
according to the following equation: 

where F represents the state transition model, and vt is the normally distributed process noise with 

zero mean and covariance Q. The state xt can be observed as zt according to: 

where H provides a mapping of the true state into the observed space, and wt is the normally 

distributed observation noise with zero mean and covariance Rt.  

SHR =
∑ 𝐴(F0∙𝑖−𝐹0/2)𝑁

𝑖=1

∑ 𝐴(F0∙𝑖)𝑁
𝑖=1

, 

 

Equation 3 

 

𝑥𝑡 = 𝐹 ∙ 𝑥𝑡−1 + 𝑣𝑡 ,  
 

Equation 4 

 

𝑧𝑡 = 𝐻 ∙ 𝑥𝑡 + 𝑤𝑡, 
 

Equation 5 
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Modal F0 was predicted by a constant velocity model described by position (i.e., F0) and 

velocity (i.e., melodic change): 

where f0 refers to modal F0 and 𝑓0̇ its derivation. The state transition matrix represents the 

transition between consecutive positions of the analyzing window:  

where T is the period between consecutive positions of the sliding window (i.e., step of the sliding 

window). The control matrix H passes only the modal F0, which is the only value measured:  

The state of f0 was treated as noise-free.  The estimation of melody was to be imperfect with no 

relation to f0. The process noise covariance Q can then be defined as: 

where 𝜎𝑓0

2  is the variance of the initial modal F0 model. The scope of our adapted model was 

controlled by the covariance of measurement noise, R. The initial value of Rt=0 was determined by 

the uncertainty 𝜎𝑓0

2  of the initial modal F0 model: 

The initial error covariance matrix Pt=0 relies on the error of initial measurement determined by 

the variance of the initial modal F0 model: 

The predicted state �̂�𝑡|𝑡−1 and predicted error covariance 𝑃𝑡|𝑡−1 were calculated via the following 

equations: 

where the modal F0 model was predicted with state �̂�𝑡|𝑡−1 representing the mean and  the first 

element of the error covariance 𝑃𝑡|𝑡−1 representing variance of the model. Then the value zt was 

measured using the predicted modal F0 model. Next, state �̂�𝑡|𝑡 of modal F0 and the error covariance 

𝑃𝑡|𝑡 were updated via the following equations: 

𝑥 = |
𝑓0

𝑓0̇
|, 

 

Equation 6 

 

𝐹 = |
1 𝑇
0 1

|, 

 

Equation 7 

 

𝐻 = |1 0|. 
 

Equation 8 

 

𝑄 = |
0 0
0 𝜎𝑓0

2 |, 

 

Equation 9 

 

𝑅𝑡=0 = 𝜎𝑓0

2 . 

 

Equation 10 

 

𝑃𝑡=0 = |
𝜎𝑓0

2 0

0 0
|. 

 

Equation 11 

 

�̂�𝑡|𝑡−1 = 𝐹 ∙ �̂�𝑡−1|𝑡−1, Equation 12 

𝑃𝑡|𝑡−1 = 𝐹 ∙ 𝑃𝑡−1|𝑡−1 ∙ 𝐹𝑇 + 𝑄, 

 

Equation 13 
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where 𝐾𝑡 represent the Kalman gain. The Kalman filter was initialized for every new phonation 

and reset to initial settings every time vocalization was interrupted. 

Algorithm outcome 

The algorithm provides a measurement of modal F0 and its distribution, as predicted by the 
Kalman filter. Extreme values of F0 can occur only when one glottal pulse is analyzed, typically 
on the border of the voiced interval. Therefore, all F0 values that were distributed eight standard 
deviations from the prediction of the Kalman filter were rejected, and the position was 
reclassified as unvoiced. The resulting F0 time course was smoothed by a median filter of the 3rd 
 

 
Figure 2: Process diagram illustrating the analysis of modal and subharmonics vibrations.  
The loudness envelope represents a sample of the analysed signal (A). Parameters of the statistical model describing modal F0 were 
estimated via cepstral analysis (B). The signal was processed inside the sliding window via the harmonic analysis of the spectrum (C). A 
candidate for modal fundamental frequency was selected accordingly to the probability model of the modal voice (D). The Kalman filter 
updated the probability model based on a new measurement of modal F0 (E). Subharmonic intervals were recognised via analysis of the 
subharmonic-to-harmonic ratio (F). The resulting track of modal fundamental frequency (solid red line) and track recalculated from the 
presence or absence of subharmonics (dashed black line) are illustrated in the graph (G). 
Abbreviations: F0 = fundamental frequency, SHR = subharmonic-to-harmonic ration, SD = standard deviation. 

𝐾𝑡 = 𝑃𝑡|𝑡−1 ∙ 𝐻𝑇 ∙ (𝐻𝑡 ∙ 𝑃𝑡|𝑡−1 ∙ 𝐻𝑇 + 𝑅𝑡)
−1

, Equation 14 

𝑃𝑡|𝑡 = 𝑃𝑡|𝑡−1 − 𝐾𝑡 ∙ 𝐻 ∙ 𝑃𝑡|𝑡−1, Equation 15 

�̂�𝑡|𝑡 = �̂�𝑡|𝑡−1 + 𝐾𝑡(𝑧𝑡 − 𝐻 ∙ �̂�𝑡|𝑡−1), 

 

Equation 16 
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order, which decreased the short-time imprecision while maintaining an outstanding time 

resolution. The resulting F0 represents modulation by the laryngeal muscles without the influence 

of possible subharmonic vibrations, i.e., intended melody. 

Subharmonic intervals were identified via the following decision process. Decisions 

concerning subharmonics were smoothed by a median filter of the 7th order. All voiced intervals 

between subharmonics that were shorter than 300 milliseconds were reclassified as subharmonics 

when phonation was not interrupted by a pause. All subharmonics shorter than 50 milliseconds 

were rejected. The positions of subharmonics were described by time labels. 

The algorithm measures modal F0, the positions of regular and subharmonic intervals, and 

the time course of the SHR. 

SPEECH FEATURES 

Degree of vocal arrests (DVA) 

An abnormal contraction of the laryngeal muscles causes intermittent voice stoppage. Increased 

DVA can be associated especially with spasmodic or choreatic movements of laryngeal muscles 

(Manfredi et al. 1996, García et al. 2011). 

DVA was measured as the proportion of unvoiced intervals detected by segmentation to 

the total time of performance. Voiced intervals initiated after 90% of total phonation time were 

removed from the analysis in order to avoid the influence of fatigue or weak respiratory flow. Only 

unvoiced intervals situated between the onset of phonation and termination of the last voiced 

interval were included.  

Maximum phonation time (MPT) 

The economy of respiration as well as coordination between phonatory and respiratory control 

affect directly the longest time one can phonate. 

MPT was calculated as the total duration of all voiced intervals detected by segmentation. 

Standard deviation of F0 (stdF0) 

Involuntary movements of laryngeal muscles can affect the geometrical and mechanical properties 

of vocal folds directly and thus modulate into melody. Increased variation of modal F0 can imply 

involuntary movements of vocal folds since each speaker was instructed to produce a steady tone. 

Additionally, an unstable modal register that changes gradually into a pulse regime can also be 

measured as increased variation.  

The variation in modulation by the laryngeal muscles was described as the standard 

deviation of modal F0 (Hlavnička et al. 2019). The standard deviation was estimated as the median 

absolute deviation rescaled to a quantile of the standard deviation.  

The proportion of subharmonic intervals (PSI) 

Subharmonic intervals can be more dominant in phonation for various reasons. Some healthy 

individuals may show subharmonics without any underlying pathology. When a person’s voice 

start to become more prone to subharmonics, it may indicate changes in the mass or control of 

vocal folds. A neurogenic origin of subharmonics is well known. Nevertheless, current terminology 

regarding subharmonics is very ambiguous and describe subharmonics via three different auditory-

perceptual characteristics, namely, diplophonia, harsh voice, or a sudden shift of pitch called pitch 

break, depending on the perceived depth of alternation and duration. The degree to which 
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perceived intervals of subharmonics dominate without respect to the depth of alternation was 

enumerated by PSI. 

PSI was calculated as the ratio between the total duration of subharmonic intervals per 

total duration of voicing (Hlavnička et al. 2019). 

Location of subharmonic intervals (LSI) 

Muscle fatigue is one of the possible factors that may influence subharmonic intervals and should 

be considered, especially when subharmonic intervals occur at the end of phonation.  

LSI was calculated as the initial time of the first detected subharmonic interval occurring 

in the course of phonation (Hlavnička et al. 2019). 

Standard deviation of the power spectral density (stdPSD) 

Changing the positioning of articulators causes changes in the resonant characteristics of the 

speech apparatus that can be captured in the spectrum. Although some speakers may move their 

articulators during sustained phonation into a more comfortable position or a position demanding 

less respiratory flow, excess movements of articulators are preeminently involuntary. The position 

of the articulators determines unique resonance characteristics of the speech apparatus that can be 

captured in the spectrum. Moving articulators makes the spectrum more variable. Increased values 

of the feature stdPSD indicate the increased variability of the spectrum and thus the severity of 

involuntary movements. The method was developed by the author of this thesis and inspired by 

collaborating with speech-language pathologist Hana Růžičková, who exploited sustained vowels 

successfully for the perceptual examination of tongue dystonia.  

The signal was decimated to 8 kHz, as only frequencies up to 4 kHz were subject to 

analysis. The signal was analyzed only in voiced intervals using a sliding window 100 milliseconds 

in length, a 10 millisecond step, and hamming weighting. It was normalized to unity power in each 

position of the analyzing window. The power spectral density was estimated by the bank of 16 

linearly spaced triangular filters in each position of the analyzing window, and the standard 

deviation of the power was calculated for each frequency band. The value of the stdPSD was 

calculated as the mean value of the standard deviations describing all 16 frequency bands. 

Degree of hypernasality (EFn_M) and intermittent hypernasality (EFn_SD) 

The impaired neuromuscular control of the elevator muscle of the soft palate increases the 

involvement of the nasal cavity in the process of speech production. Acoustically, velopharyngeal 

insufficiency can be perceived as hypernasality. When the elevator muscle of the soft palate moves 

involuntarily, the degree of hypernasality varies accordingly and hypernasality is then intermittent. 

The resonance of the nasal cavity can distort the formant structure significantly, which can be 

measured directly as the attenuation of a specific frequency band. Hypernasality can be measured 

on the sustained vowel /I/.  

The method used for the assessment of hypernasality was developed originally by Novotný 

et al. (2016) and is provided here for consistency and to clarify implementation details. Frequencies 

below 65 Hz were filtered out using a high-pass Chebychev filter of the 4th order to prevent 

possible disruptions from popping or a main hum. The signal was decimated to 8 kHz. Only voiced 

intervals situated between 10% and 90% of the signal time course were analyzed. This trimming 

reduces the influence of unstable vocal activity at the beginning of phonation and weak expiratory 

flow at the end of phonation.  The signal was filtered with a band-pass Butterworth filter of the 

3rd order with a passband from 890.9 Hz to 1122.5 Hz. The energy of the filtered signal was 
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calculated inside the sliding window of 60 milliseconds in length and a 5 milliseconds step. All 

measurements of the energy were normalized by the total energy of the signal and expressed via a 

logarithmical scale. The overall degree of hypernasality was described by the mean energy of the 

filtered signal (EFn_mean), calculated by using the median. The variability of hypernasality was 

estimated as the standard deviation of the energy of the filtered signal (EFn_SD). Note that the 

significant effect of hypernasality on frequencies around 1 kHz was discovered by Novotný (2016) 

using a 1/3-octave analysis. The proposed implementation applies only to one filter of the desired 

frequency band in order to decrease the computational burden. Suggested refinements, including 

a different sampling rate, had no measurable influence on the resulting features. The proposed 

implementation and the original method were perfectly correlated for all available data.  

Jitter, shimmer, and Harmonics-to-noise ratio (HNR) 

Jitter, shimmer, and HNR are well-established metrics that measure the perturbation of  the vocal 

fold vibration in terms temporal instability, amplitude instability, and additive noise, respectively. 

Increased values of perturbation are associated with dysphonia, namely, hoarseness.  

Intervals of regular vibrations were preferred for perturbation analysis in order to avoid 

bias resulting from the alternation of subharmonic vibrations related to different speech 

conditions. Jitter, shimmer, and HNR were analyzed in a sliding window with a length calculated 

to be 10 periods of  the estimated modal F0 and a step corresponding to one period of the modal 

F0 given by the initial model. A template waveform with length equal to the period of modal F0 

was selected at the beginning of analyzing window (see Figure 3). The normalized cross-correlation 

between the template waveform and rest of the window was defined by the following equation: 

where ycc[k] is k-th sample of the normalized cross-correlation between the template g and signal 

x. The bar above g and x indicates the corresponding average value. The equation was 

implemented using Lewis’s approach (1995). The template was normalized to zero mean and unity 

variance (�̇�): 

allows the definition of the cross-correlation function to be simplified to the following equation: 

where the denominator is a normalization factor realized as a sliding variance. The convolution 

was realized via multiplication in the frequency domain. Local HNR was calculated from maximal 

peaks of the normalized cross-correlation detected at local maxims with a minimal distance of 80% 

of the detected modal F0. HNR was expressed in logarithmical scale. Local jitter was computed 

from the distance between adjacent maximal peaks, and local shimmer was determined as the 

difference in measurements of the normalization factor at times of adjacent maximal peaks of 

normalized cross-correlations. Each position of the analyzing window was described by the  

𝑦𝑐𝑐[𝑘] =
∑ (𝑔[𝑛] − �̅�)𝑀

𝑛=1 ∙ (𝑥[𝑛 − 𝑘 + 1] − �̅�𝑘)

√∑ (𝑔[𝑛] − �̅�)2 ∙ ∑ (𝑥[𝑛 − 𝑘 + 1] − �̅�𝑘)2𝑀
𝑛=1

𝑀
𝑛=1

 , 

 

Equation 17 

 

�̇� =
𝑔 − �̅�

𝜎(𝑔)
 , 

 

Equation 18 

 

𝑦𝑐𝑐[𝑘] =
∑ �̇�𝑀

𝑛=1 ∙ (𝑥[𝑛 − 𝑘 + 1] − �̅�𝑘)

√∑ (𝑥[𝑛 − 𝑘 + 1] − �̅�𝑘)2𝑀
𝑛=1

 , 

 

Equation 19 
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median values of the perturbation measurements. Overall values of jitter, shimmer, and HNR were 

estimated as the median of all values measured inside the sliding window. The median was 

preferred to reduce the influence of erroneous extreme values. The method was conceived by 

author of this thesis and has not been published yet.  

2.3.2 Rhythm test 

SEGMENTATION 

Segmentation of the rhythm task can be tricky in dysarthria even though only isolated syllables are 

subject to detection. Syllables can be separated imperfectly, and intervals between syllables are not 

always regular. Syllables can also be articulated imprecisely with varying loudness. Increased noise, 

such as respirations, incomplete occlusion, and tongue clicks, can be expected. The segmentation 

algorithm was designed to overcome these obstacles via sensitive syllable identification, followed 

by the self-correction of false positives utilized by outlier detection and verification. The method 

was developed by author of this thesis and published in paper by Rusz et al. (2015A). Figure 4 

illustrates the segmentation process. 

 

 
 
Figure 3: Illustration of perturbation analysis. 
A sample of the speech signal is plotted as a loudness envelope (A). The template was selected from the beginning of the sliding window (B) 
and matched with the rest of the window in terms of the normalized cross-correlation (C). Maxims of cross-correlations served as a 
measurement of HNR, whereas periods between maxims allowed the jitter to  be measured (C). Shimmer was determined from the 
normalization factor of the cross-correlation function (D). The resulting values of jitter, shimmer, and HNR were calculated as median 
measurements gathered from all positions of the sliding window (E).  
Abbreviations and symbols: HNR = harmonics-to-noise ratio, T = period, A = amplitude. 
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Syllable identification 

The sampling rate of the signal was reduced to 10 kHz in order to decrease the computational cost 

of high-frequency components, which are redundant for the detection of syllable nuclei. The signal 

was analyzed in a sliding window 10 milliseconds in length with a 3 milliseconds step and hamming 

weighting. Further, the signal was parameterized by 12 Mel-frequency cepstral coefficients. The 

spectrum of syllables is skewed more towards low frequencies, whereas the spectrum of pauses is 

flatter. Therefore, the first three MFCCs representing the low-frequency envelope of the spectrum 

were selected for recognition of syllable nuclei. The MFCC were analyzed in the recognition 

window, ensuring fast adaptation to the spectrum variability due to articulatory deficits.  A 

recognition window 4 seconds in length and 800 millisecond steps ensure that every position of 

the window will contain at least one syllable. The K-means algorithm with two components was 

preferred for the cluster analysis because maximizing the distance between clusters can be more 

robust in cases when there are interfering clusters or additional clusters constituted by non-speech 

sounds. Modeling the data with a Gaussian mixture model may prove problematic because the 

expectation-maximization (EM) algorithm may converge into local optima in these situations. A 

cluster of syllables was identified as the component with the higher mean of the first MFCC 

associated with the power of the signal. The decision was smoothed by a median filter of the fifth 

order. Only syllables longer than 30 milliseconds and pauses longer than 80 milliseconds were 

accepted. Figure 4 illustrates the process of syllable identification. 

Outlier detection 

Audible inspirations and other non-speech sounds may be detected occasionally as syllables when 

their spectrum is more similar to the spectrum of syllables than to the spectrum of pauses. 

Therefore, the identified syllables should be compared to each other and described as one 

observation by computing the mean of each of the first three MFCCs. The following procedure is 

intended to remove these false positives by identification of inliers represented by syllables and 

outliers represented by false positives.  

A more general description of the algorithm is provided here in order to illustrate the 

process of outlier identification comnprehensively. Outliers have extreme values and thus can be 

identified as observations with low probability. The problem can arise when the total number of 

observations is low and/or the number of outliers is high. Outliers can bias the probability model 

estimated on all the data and make results unreliable. Therefore, it is preferable to estimate the 

model on all the data and identify inliers with increased certainty using the very tough criteria of 

the 30th percentile. Inliers can then define a new probability model more reliably. The set of inliers 

can updated using the new probability model and a less rigorous 50th percentile, and the process 

of model redefinition and the update of inliers can be repeated until no new outliers are found.  

The original study (Rusz et al. 2015A) applied the Mahalanobis distance; however, any 

multivariate probability model or metric can serve just as well. The Mahalanobis distance is defined 

by the following equation: 

where DM(xs) is the Mahalanobis distance between observation of syllable xs and the distribution 

of syllables Xs, S is covariance matrix of the distribution Xs, and μ is mean of the distribution Xs. 

Percentiles were tested via conditioning DM2(xs) using values determined from χ2 distribution as 

𝐷𝑀(𝑥𝑠) = √(𝑥𝑠 − 𝜇)𝑇 ∙ 𝑆−1 ∙ (𝑥𝑠 − 𝜇), 
 

Equation 20 
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𝜒𝐿
2(𝑞), where the degrees of freedom L represent the number of dimensions analyzed and q is the 

percentile (30th or 50th) used for the initial estimation of inliers and the further update, respectively. 

Outlier verification 

The algorithm above will identify all extreme observations, which may include not only 

respirations, but also dissimilarly articulated syllables, typically too loud or silent syllables. 

Accordingly, the loudness of outliers was verified. Only the frequency band from 100-500 Hz, 

filtered using a Chebychev’s filter of the fifth order, was analyzed because respirations usually 

manifest very low energy in this band. The signal was squared and filtered via a moving average  

 

Figure 4: Process diagram of syllable identification.  
(A) A sample rhythm task containing the syllables ‘Pa’, 
dissimilar syllables ‘Pa!’, and respirations ‘R’ plotted as the 
envelope of sound pressure level with marked positions of 
sliding recognition windows. (B, C) Clusters of detected 
syllables marked with red ‘x’ marks and clusters of pauses 
marked with blue circles in parametric space. (D) Time course 
of smoothed decision with rejected intervals marked as red 
filled areas. (E) Syllables described as individual observations 
in parametric space with inliers highlighted as blue circles and 
outliers highlighted as red triangles. (F) Accepted syllables, 
including the dissimilar one, marked as blue circles, and 
respiration verified as the outlier plotted as a red triangle. (G) 
The resulting recognition of syllables plotted as blue hatched 
areas and corresponding time labels of energy peaks marked 
on the time axis.  
Abbreviations: MFCC = Mel-frequency cepstral coefficients. 
Copyright notice: This figure was designed by the author of 
this thesis and published in the research by Rusz et al. 
(2015A) under the terms of the Creative Commons 
Attribution License (CCBY). All authors of the original paper 
(Rusz et al. 2015A) share co-authorship.  
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with a 10 millisecond length and 3 milliseconds overlap, plus hamming weighting. Each inlier Px 

and outlier Py was described by their mean power or maximum power, respectively. Outliers were 

rejected when their maximum power Py was higher than 95% of the inliers’ mean powers Px. 

Testing of the 95% population level was performed using Chebychev’s inequality, which is defined 

as follows: 

where PY(i) denotes individual observations of outliers, μ is the mean, and σ is the standard 

deviation. 

Time labels 

Each syllable was described with a label corresponding to the time of the highest filtered energy 

peak. 

SPEECH FEATURES 

Rhythm acceleration (RA) and rhythm instability (RI) 

Oral festination associated with hypokinetic dysarthria is related to timing disturbances in the basal 

ganglia affected by parkinsonian neurodegeneration. Increased values of RA indicate pace 

acceleration. Additionally, the pace can be more irregular as a result of decreased control over the 

speech apparatus. However, hyperkinetic and ataxic movements are more significant causes of 

disturbed regularity of pace. An increased value of RI is associated with a less regular rhythm. 

 RA and RI were calculated using regression analysis. The duration of the intervals between 

consecutive syllables, hereby referred to as syllable gaps, and its time of occurrence was regressed 

by a polynomial of first order (see Figure 5). RA was determined as the negative slope of the 

regression line. Values of RA higher than zero indicate acceleration. The RI was computed as  

 
Figure 5: Illustration of designed rhythm features.  
Gaps between detected syllables are plotted in the time course as ‘x’ marks. Note that the slope of the regression line has a negative sign 
in the defining equation in order to help an examiner with the interpretation of results by associating positive values of RA with 
acceleration.  
Symbols and abbreviations: Δt = interval duration between consecutive syllables, RA = rhythm acceleration, RI = rhythm instability, ε = 
residuals of the regression model. 
Copyright notice: This figure was designed by the author of this thesis and published in the research by Rusz et al. (2015A) under the terms 
of the Creative Commons Attribution License (CCBY). All authors of the original paper (Rusz et al. 2015A) share co-authorship. 

𝑃𝑌(𝑖) > 𝜇(𝑃𝑋) − 4𝜎(𝑃𝑋), 

 

Equation 21 
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the sum of absolute residuals determined by the difference between the observed value of the 

syllable gap and value predicted by the regression line divided by the total duration of speech.  

2.3.3 Connected speech 

SEGMENTATION 

The basic activities of the speech apparatus represented by voiced speech, unvoiced speech, 

respiration, and pause were detected by the following process (see Figure 6) published by 

Hlavnička et al. (2017A). The signal was preprocessed and parameterized. A cluster analysis was 

then applied in the sliding recognition window, ensuring adaptation to the changing quality of a 

speech performance. Voiced speech, unvoiced speech, respiration, and pauses were separated 

sequentially using various spaces of parameters. Such an approach makes it possible to use a simple 

Gaussian mixture model (GMM) for the description of otherwise complicated and imperfectly 

separable mixtures. 

Preprocessing  

The signal was decimated to 8 kHz sampling rate. The main hum, popping, and other possible 

disruptions were filtered out by a 4th order high-pass Chebychev filter with a cut-off frequency at 

130 Hz. Additionally, high frequencies were emphasized by an infinite impulse response filter with 

coefficients [1 0.9] in order to improve recognition of unvoiced intervals. 

Parameterization  

Parameters PWR, ACR, and ZCR were computed inside a sliding window of 15 milliseconds in 

steps of 5 milliseconds using the following equations: 

where x is a signal in a window of length N, h represents the hamming window, Rx denotes the 

normalized autocorrelation function, M is length of one-sided autocorrelation function shortened 

to 75%, σx symbolizes the standard deviation of the signal, and μx describes the mean of the signal. 

All parameters were described with a logarithmical scale to compensate for their log-normality. 

One-sided Rx was shortened to 75% to reduce estimation error. Rx was preferred for computation 

of ZCR because all voiced intervals, including vowels and consonants, can be then described by 

the unimodal normal distribution. ACR was determined as the variance of Rx. The first five of the 

24 linear-frequency  cepstral coefficients (LFCC) were used to describe the low frequency envelope 

of the power spectral density.  

Sequential separation 

Intervals of voiced speech, unvoiced speech, respiration, and pauses were recognized in a given 

order following the process of cluster analysis inside the recognition window. The cluster analysis 

PWR =
1

𝑁
∑ 𝑥2[𝑛] ∙ ℎ[𝑛]𝑁

𝑛=1 , Equation 22 

𝑅𝑥[𝑘] =
1

𝑁∙𝜎𝑥
2 ∑ (𝑥[𝑛] − 𝜇𝑥) ∙ (𝑥[𝑛 + 𝑘] − 𝜇𝑥)𝑁

𝑛=1 , Equation 23 

ACR =
1

𝑀−1
∑ (𝑅𝑥[𝑘] − 𝑅𝑥

̅̅̅̅ )2𝑀
𝑘=1 , Equation 24 

ZCR =
1

𝑁−1
∑ |𝑠𝑖𝑔𝑛(𝑅𝑥[𝑛 + 1]) − 𝑠𝑖𝑔𝑛(𝑅𝑥[𝑛])|𝑁−1

𝑛=1 , Equation 25 

𝑠𝑖𝑔𝑛(𝑅𝑥[𝑛]) = {
1,   𝑅𝑥[𝑛] ≥ 0

−1,   𝑅𝑥[𝑛] < 0,
 

 

Equation 26 
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assumed the GMM of the parametric space. An optimal number of mixtures in GMM was 

determined from the corresponding highest value of Calinski-Harabasz index computed over the 

range <2; 3>. The parameters of the GMM were estimated using the EM algorithm. Clustering 

was performed using a Bayesian discriminant. The resulting decision was smoothed with a set of 

rules derived from the natural timing of  the speech apparatus and the assumption that unvoiced 

speech accompanies voiced speech in the Indo-European language family. 

The voiced speech was determined in a recognition window 20 seconds in length with 6- 

second steps. A cluster of voiced speech was determined inside the parametric space of PWR, 

ACR, and ZCR as the one with the highest mean PWR. A median filter of the 5th order smoothed 

the detection. Voiced segments shorter than 30 milliseconds were reclassified as voiceless while 

regarding natural limitations to control abduction and adduction of the vocal folds within a shorter 

period. 

Unvoiced speech comprises intervals of unvoiced consonants. The unvoiced speech was 

classified in voiceless intervals shorter than 300 milliseconds by using a recognition window of 60 

seconds in length and 20-second steps. A long recognition window guarantees that the sample size 

of the less frequent unvoiced consonants will be sufficient. The first five LFCCs were the preferred 

parameters for cluster analysis because both unvoiced speech and environmental noise represent 

random signals and can be distinguished well in the spectrum. A cluster of unvoiced speech with 

the highest mean for the first LFCC was identified in relation to the power of the signal. Only 

unvoiced speech longer than 5 milliseconds in a distance shorter than 30 milliseconds was 

accepted, all other unvoiced speech was reclassified as pause intervals. 

Respirations were analyzed in the remaining speechless intervals longer than 200 

milliseconds. Respirations were determined in the space of the first five LFCCs. The component 

with the highest mean for the first LFCC was classified as respiration. Only respirations longer 

than 40 milliseconds were accepted. The distance of respiration to the nearest interval of voiced 

speech was conditioned with a threshold of 30 milliseconds, which stems from the fact that 

respirations are bounded with silence, as lungs stop during the reversion of airflow. Respirations 

bounded with no pause longer than 30 milliseconds were thus reclassified as unvoiced speech. 

Intervals between respirations shorter than 400 milliseconds were classified as respirations. When 

less than two respirations are detected, then candidates for respiration longer than 200 milliseconds 

were reclassified as respirations. This rule was added to correct for situations in which a speaker 

with a severe speech disorder breaks general assumptions. 

Pauses comprise all intervals longer than 30 milliseconds which are not voiced speech or 

unvoiced speech. Note that respirations are a subset of pauses. 

The outcome of the segmentation are labels describing the start time and end time of each 

detected interval of voiced speech, unvoiced speech, respiration, and pause. 

SPEECH FEATURES 

Resonant frequency attenuation (RFA) 

The main hypothesis behind RFA is that articulatory decay and mumbling will reduce the 

prominence of acoustic resonances in the speech signal (Rusz et al. 2015B). Less prominent 

resonances are surrounded naturally by shallow valleys. The decreased depth of valleys between 

formants is related to overall sound propagation and radiation and thus can indicate subliminal 

articulatory imperfections that cannot be captured using standard measurements of formant 

frequencies, such as vowel space area.  
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Figure 6: Automated segmentation of connected speech. 
(A) Speech signal analyzed inside sliding recognition window. (B) 
Clusters of voiced speech marked by red ‘x’ marks were determined 
in the parametric space of ACR, PWR, and ZCR. (C) Remaining 
voiceless intervals shorter than 300 milliseconds were classified 
into unvoiced speech and pauses inside the recognition window. (D) 
Recognized clusters of unvoiced speech marked by green squares 
and pause intervals marked as grey ‘+’ marks. (E) Speechless 
intervals longer than 200 milliseconds analyzed inside recognition 
window. (F) Clusters of detected intervals of respiration plotted as 
blue ‘o’ marks and pauses without respiration marked as grey 
triangles. (G) Time course of the resulting classification into voiced, 
unvoiced, respiratory, and pause intervals.  
Abbreviations: ACR= variance of autocorrelation function, PWR = 
signal power, LFCC = linear-frequency cepstral coefficients, ms = 
milliseconds. 
Copyright notice: This figure was designed by the author of this 
thesis and published in the research by Hlavnička et al. 2017A under 
the terms of the Creative Commons Attribution 4.0 International 
License. All co-authors of the original paper (Hlavnička et al. 2017A) 

share co-authorship. 

 
 

 

 

The RFA was analysed in a sliding window of 50 milliseconds in length with 12.5-

millisecond steps. Only the voiced speech was analysed. The power spectral density (PSD) was 

computed for every position of the sliding window using a bank of 24 linearly-spaced, overlapping 

filters in the band from 200 Hz to 4 kHz. An abnormal vocal source or nasal resonance may affect 

the prominence of resonances too. Nonetheless, their influence can be compensated by the 

cepstral liftering of PSD. The PSD was described using a logarithmic scale and transformed into 

cepstrum (CPSD) using a discrete cosine transformation. The low-frequency components of PSD, 

such as the power of the signal and gradual attenuation, are contained approximately within the 

first three coefficients of CPSD. High-frequency components representing sudden changes in the 

spectrum are contained approximately within coefficients higher than 10 in order. Therefore, only 
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values of coefficients ranging from 4 to 9 in order were preserved, and other values of CPSD were 

set to zero. Cepstrally liftered PSD (LPSD) was computed by the inverse discrete cosine transform 

of CPSD. The RFA was measured as the difference between the first local minima of LPSD and 

its consecutive maxima. With respect to the logarithmic scale, RFA represents the ratio of the 

second resonance and its preceding valley. The resulting value of RFA was calculated as the mean 

value of RFA calculated for all positions of the sliding window. The RFA was invented by the 

author of this thesis and described in the publication by Rusz et al. (2015B). 

The rate of speech timing (RST) 

Reduced range of movement in hypokinetic dysarthria can disturb the timing and coordination of 

speech subsystems considerably. As a result, the speech rate can be accelerated or slowed, 

phonemes are imprecisely articulated or omitted, and voicing can interfere in unvoiced speech or 

pauses. This complex deficit manifests as a reduced stream of voiced, unvoiced and pause intervals. 

RST was designed by Hlavnička et al. (2017A) to measure the rate of voiced, unvoiced and pause 

intervals and is influenced by the syllabic rate as well as the overall quality of a speech performance. 

Although RST can serve as a proxy measurement for syllabic rate, the results of RST should always 

be interpreted with respect to the above. 

The total number of voiced, unvoiced, and pause intervals was accumulated during the 

time course. The time course was modeled by a regression line, which reduces bias made by 

extreme values. RST was determined as the gradient of the regression line (Hlavnička et al. 2017A). 

Net speech rate (NSR) 

Dysfunctional speech manifests frequently as slow speech, not only due to the slowness of 

individual movements, but also as compensatory mechanism for increasing the intelligibility of 

speech. The NSR is standard measurement which has been used for decades by speech 

pathologists. NSR can be measured only when the number of syllables is a priory known. Thus, 

NSR was analysed only for the text reading task. 

The total number of syllables was divided by the total duration of speech, including only 

detected voiced and unvoiced intervals (Hlavnička et al. 2017A). 

Acceleration of speech timing (AST) 

Acceleration of speech production results from increasing the rate of speech movements or 

decreasing the range of speech movements. The stream of voiced, unvoiced, and pause intervals 

can be evaluated by RST; thus, measuring changes in RST could quantify acceleration. 

Hypothetically, both a reduction in RST and increase in RST over the course of time can indicate 

acceleration, which extends the assumption of reduced RST in acceleration presented by the 

original study of Hlavnička et al. (2017A). Additionally, other factors, such as fatigue, can also 

manifest in reducing the stream of voiced, unvoiced, and pause intervals. Therefore, the feature 

requires thorough interpretation in the broad context of other symptoms.  

The speech run was spitted into two halftimes with a 25% overlap in order to smooth the 

transition and decrease the influence of the speech content. The AST was determined as the 

difference between the RST computed in each halftime divided by the total duration of a speech 

utterance. 

Duration of pause intervals (DPI) 

Difficulties in initiating speech have a considerable effect on pause duration. Alternatively, the 

statistical distribution of pause duration can be biased by omitted short pauses, thereby making 
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prolongation of pauses even more noticeable. The DPI reflects hypokinesia of the movements 

involved in initiating speech and pause production.  

The DPI was calculated as the median length of pause intervals (Hlavnička et al. 2017A). 

Entropy of speech timing (EST) 

Any healthy speaker has the ability to produce a variety of sounds. When the control and 

coordination of speech become more limited, the speech becomes more ordered and predictable. 

The arsenal of speech movements can be categorized crudely as voiced speech, unvoiced speech, 

pause, and respiration. Accordingly, a decreased entropy of observed categories can indicate 

impaired coordination between subsystems or insufficient control over one or more subsystems 

of speech. Voiced speech, which represents a fundamental component of speech production, may 

tend to dominate the speech at the expense of other types of speech intervals. 

The EST was computed as Shannon entropy applied on incidences of speech intervals 

according to the following equation (Hlavnička et al. 2017A): 

where nv is number of voiced intervals, nu is number of unvoiced intervals, np is number of pause 

intervals, nr is number of respiratory intervals, and nt means the total number of speech intervals. 

Each interval was accounted for as one observation. Note that pauses bounding respiration were 

accounted only once, as respiration is a subset of pauses. 

Duration of unvoiced stops (DUS) 

The production of unvoiced stops represents the most rapid task for articulators. Articulation of 

unvoiced stops is thus a valuable marker of speech control and coordination. Performance of 

unvoiced stops is commonly measured with voice onset time, which unfortunately does not reflect 

pure articulatory precision but rather coordination of articulation and phonation. The DUS was 

designed by Hlavnička et al. (2017A) under the assumption that the explosion of poorly articulated 

stops is more likely to be accompanied by turbulent noise. Unlike VOT, which identifies the 

position of the burst, DUS identifies the stop consonant as the interval of the impulse and/or 

noise. Rapidness and precision of articulatory movements can be then quantified based simply on 

the duration of the stop consonant. An increased value of DUS reflects increased friction, and 

extreme values can indicate spirantization of unvoiced stops. 

The DUS requires detection of unvoiced stops, which demonstrate a significantly shorter 

duration. The duration of unvoiced stops and fricatives have a bimodal normal distribution. The 

parameters of the distribution can be estimated using the EM algorithm and classified with a 

Bayesian discriminant. The DUS was computed as the median duration of unvoiced stops. 

Decay of unvoiced fricatives (DUF) 

Speech pathologists commonly observe the decay of articulatory precision during speech run in 

hypokinetic dysarthria. A wide variety of movements contributes to articulation, making the 

measurement of articulatory decay a very difficult task. Frictions represent a specific articulatory 

movement that can be identified easily and quantified in voiceless fricatives. The level of high-

frequency components in unvoiced fricatives (>2.5 kHz) is in direct relation to the level of friction. 

EST = −
𝑛𝑣

𝑛𝑡
∙ log2 (

𝑛𝑣

𝑛𝑡
) −

𝑛𝑢

𝑛𝑡
∙ log2 (

𝑛𝑢

𝑛𝑡
) −

𝑛𝑝

𝑛𝑡
∙ log2 (

𝑛𝑝

𝑛𝑡
) −

𝑛𝑟

𝑛𝑡
∙ log2 (

𝑛𝑟

𝑛𝑡
), 

 

Equation 27 
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The DUF measures the gradual decay of high-frequency bulk and thus quantifies the possible 

decay of the performance. 

The speech run was spitted into two halftimes with a 25% overlap, ensuring a smooth 

transition and decreasing the influence of the speech content. Fricatives were determined from the 

durational distribution of unvoiced consonants as described in section 2.3.3 CONNECTED SPEECH 

in chapter DURATION OF UNVOICED STOPS (DUS), page 36. Every interval of unvoiced fricative 

was parameterized using 24 MFCCs. The ratio between the low and high Mel-frequency bands 

was approximated by the second MFCC. The mean value of the second MFCC coefficient was 

computed from all unvoiced fricatives for both halftimes. The DUF was then computed as the 

difference between the mean second MFCCs in the two halftimes divided by the total duration of 

the speech. The DUF was scaled in parts per thousand to increase convenience in reading. The 

DUF was developed by author of this thesis and described in the publication by Hlavnička et al. 

(2017A). 

Duration of voiced intervals (DVI) 

Decreased control of the laryngeal muscles and coordination of the laryngeal and supra-laryngeal 

muscles may manifest via voicing that interferes or continues within voiceless intervals, including 

unvoiced speech or pauses. Voiced intervals are prolonged as a result. 

The DVI was computed as the mean duration of voiced intervals detected by the 

segmentation (Hlavnička et al. 2017A). 

Gaping in between voiced intervals (GVI) 

Examination of the pause production in the phenomena described above (see DVI) can provide 

deep insight into the vocal folds’ ability to abduct and adduct. The pauses bounded by voicing 

represent pure activity to adduct when vocal folds block the airflow to stop voicing or to abduct 

in the case where vocal folds stop voicing without blocking the airflow. The adduction is more 

dominant in short pauses, hereby referred to as gaps, whereas abduction can be performed 

naturally in long pauses between words or sentences, hereby referred to as formal pauses. The rate 

of  the gaps in between voiced intervals reflects the ability of the vocal folds to stop voicing via 

adduction (Hlavnička et al. 2017A). Decreased gaping may indicate limited control over vocal fold 

adductors. 

The distribution of pauses in between voiced intervals is a bimodal mixture of gaps and 

formal pauses. The parameters of these mixtures can be estimated using an EM algorithm. Gaps 

in between voiced intervals can then be identified via Bayesian discriminant analysis as the 

component with the shorter mean duration. The GVI was computed as the number of gaps per 

total speech time according to the original publication by Hlavnička et al. (2017A). 

Rate of speech respiration (RSR) 

Decreased range or control of respiratory movements, inefficient air-flow management during 

speech production, or an impaired ventilatory pattern can lead to an increased rate of speech 

respiration. 

The following computational procedure for the RST aims to decrease the influence of 

falsely detected respiratory intervals. Each respiration event was described by the mean time 

between the start and end of the respiratory intervals. The time between consecutive respiratory 

events represents a period between respirations. The RSR was estimated as an inversion of the 

median respiratory period and expressed in respirations per minute (Hlavnička et al. 2017A). 
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Pause intervals per respiration (PIR) 

Speech is structured uniquely by ventilation patterns. Respiratory needs, phonatory and articulatory 

control as well as grammar and cognition contribute collectively to the resulting breath groups. 

The collaboration between respiration and the other subsystems can be disturbed particularly by 

the ability to control the respiratory airflow, which can be captured by a decreased number of 

pauses per breath group. 

The PIR was calculated as the median number of pauses between detected respiratory 

intervals (Hlavnička et al. 2017A). 

Relative loudness of respiration (RLR) 

 The respiratory airstream produces turbulent noise as it flows through respiratory airways and the 

oral cavity. The loudness of the inspiratory noise is related to the respiratory force and can be 

increased by an obstruction in the airways, such as a constricted laryngeal muscle in hyperkinetic 

dysarthria. Unfortunately, the measurement of loudness requires a reference signal or calibration 

of the recording system, which is not convenient in practical applications. Using speech loudness 

as a reference for measuring the loudness of respiration can compensate for the unknown gain of 

the recording system and be used to evaluate the differences between the expiratory and inspiratory 

effort represented by speech and detected respirations, respectively.  

The signal was decimated to 8 kHz because a band of higher frequency does not contribute 

to the measured effect. It was squared and filtered with a moving average of 15 milliseconds in 

length. Loudness was computed by expressing the resulting power envelope via a logarithmic scale. 

The RLR was calculated as the difference between the median loudness of respiratory intervals 

and median loudness of voiced speech. Note that there are studies (Hlavnička et al. 2017A, 2017B) 

that have utilized all of the speech intervals, including voiced and unvoiced speech, which has been 

found to be less sensitive and biased considerably by the loudness of unvoiced consonants.  

Latency in respiratory exchange (LRE) 

Exhalation and inhalation involve groups of respiratory and accessory muscles which must 

coordinate perfectly during the conversion from exhalation to inhalation. Expiratory movements 

must stop and inspiratory movements must be initiated properly. The ability to initiate inspiration 

can be substantially deteriorated, particularly in the later stages of movement disorders. 

Problematic initiation of respiration manifests in an increased latency between exhalation and 

inhalation. In general, speech in the Indo-European language family is carried out by exhalation, 

with the small exception of rare ingressive speech sounds used for feedback words or expression 

of emotions, e.g., ‘Huh!’. Detected respiratory intervals can be definitely assumed to be 

inspirations. Given the above, the measurement of latency between intervals of detected speech 

and respiration can indicate the problematic initiation of inspiration (Hlavnička et al. 2017A).  

All respiratory intervals were paired with preceding intervals of speech. Latency was then 

determined as the difference between the detected start of respiratory intervals and the detected 

end of the preceding speech interval (Hlavnička et al. 2017A). The LRE was calculated as the mean 

of all latencies. 

Standard deviation of power (stdPWR) 

Abnormal variations in loudness can be observed in any dysarthria, with the exception of unilateral 

motor neuron dysarthria (Duffy 2013). In addition to a neurological impairment, a psychological 

disorder or habitual impairment may be the cause of the variations observed. Abnormal variation 
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of loudness reflects typically poor respiratory-phonatory coordination and control. A variation in 

excessive loudness is prominent in ataxic and hyperkinetic dysarthria and is related mostly to the 

momentary hyperadduction of the vocal folds or the effects of dystonia on respiratory support 

(Freed 2011, Duffy 2013). Other dysarthrias may manifest substantial decreased loudness variation, 

which is also called monoloudness, as a result of weakened laryngeal or respiratory muscles (Duffy 

2013). Monoloudness may be co-currently present in hyperkinetic dysarthria when dystonic 

contractions wane (Freed 2011). Variation of loudness is categorized commonly as a prosodic 

feature. 

The signal was decimated to 8 kHz because higher frequencies are redundant for further 

analysis. The squared signal was filtered by a moving average of 20 millisecond in length and 

expressed using a logarithmic scale. The feature stdPWR was established as the standard deviation 

of the resulting loudness envelope computed on all voiced intervals.  

Standard deviation of fundamental frequency (stdF0) 

The melody of the voice is modulated by very fine movements of the vocal folds. Inspection of 

vocal melody can yield accurate insights into patients’ abilities to control laryngeal muscles. 

Variation in melody reflects the ability to contract and/or relax muscles controlling the vocal folds. 

A limited range of motion in the laryngeal musculature due to weak laryngeal control or tenseness 

of the laryngeal muscles decreases variation in melody. A perceptual feature of decreased melody 

variation, referred to as monopitch, is associated with the hypoadduction of the vocal folds. 

Monopitch can occur in various dysarthrias and is one of the most prominent characteristics of 

hypokinetic dysarthria. Excess melody variations can be the result of the involuntary movements 

of the laryngeal muscles in dystonia, a medical condition describing sustained or repetitive muscle 

contractions. Excessive melody variation is a typical feature of hyperkinetic dysarthria.  

Modal vibrations of vocal folds were estimated using an automated algorithm (see section 

ANALYSIS OF THE MODAL AND SUBHARMONIC VIBRATIONS OF VOCAL FOLDS, page 21). The 

detected time course of modal F0 was expressed in semitones in order to compensate for the 

differences in variability between lower- and higher-pitched voices. The feature stdF0 was 

implemented as the standard deviation of detected modal F0 in semitones estimated via the median 

absolute deviation. 

2.3.4 Diadochokinetic test 

SEGMENTATION 

Segmentation of the speech signal in a diadochokinetic test aims to describe the position of the 

unvoiced stop consonants via the time of burst and voiced intervals via the time of voice onset 

and time of occlusion.  Identification of individual syllables can be a very difficult task in severe 

dysarthria when syllables are articulated in a diverse fashion and voicing continues between 

syllables. However, the precise detection of a burst in embarrassing conditions of increased noise 

between syllables represents the biggest challenge in segmentation. Even precisely detected bursts 

can be valueless when voice onset is detected inaccurately because bursts are examined only via 

the durations of the intervals between burst and voice onset while following speech features.  

The method for the automated detection of syllables (Rusz et al. 2015A) was adopted for 

segmentation of the diadochokinetic test due to the supreme accuracy of syllable detection. The 

only modification of the procedure undertaken was the use of a shorter recognition window of 0.3 

s, which allowed faster adaptation to rapid articulatory movements. The method (Rusz et al. 
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2015A) detects approximate intervals of syllables with a precision limited by the step of the 

parameterization window, which is acceptable for the evaluation of rhythm, but not for the precise 

evaluation of rapid diadochokinetic movements. Thus, the refinement of the voice onsets of 

detected syllables is provided. Additionally, robust detection of the burst is also introduced in order 

to make the assessment reliable for practical application. These extensions of the original method 

(Rusz et al. 2015A) were designed by the author of this thesis and have not been published yet.  

Refinement of voice onset detection 

The onset of each syllable detected by the method (Rusz et al. 2015A) was refined using the 

following procedure. The signal sampled at 8 kHz was analyzed in the interval from 20 milliseconds 

prior to syllable onset to occlusion. It was then filtered by the integrator with an integration 

constant of 0.95. The integration aimed to highlight vocal pulses and suppress high frequencies of 

burst. Subsequently, the power envelope was computed from the squared signal using a moving 

average 5 milliseconds in length and Gaussian weighting. The power was scaled in logarithms to 

compensate for its log normality. The zero-crossings of the integrated signals were described by 

their respective powers and classified into three clusters using the k-means algorithm. Clusters 

corresponded to pause, instabilities preceding voice onset, and voiced interval. The cluster with 

the highest mean rank of power was labeled as a voiced cluster. The decision was smoothed by a 

median filter of the fifth order. Voice onset was detected as the first voiced zero-crossing over the 

course of time. 

Detection of burst 

Bursts were detected for each voice onset in the interval from 75 milliseconds preceding voice 

onset to voice onset. When occlusion of the previous syllable interfered into the interval, a shorter 

frame beginning at the time of occlusion was analyzed. A new, unpublished method for the 

detection of bursts was developed by author of this thesis in order to increase the reliability of the 

results for severe dysarthria, for which the established method, based on the analysis of a 

spectrogram, was not suitable (Novotný et al. 2014, 2015).  

The detection of impulses using a spectrogram is a popular and very intuitive method, but 

it ignores completely the importance of phase in the localization of an impulse. In the limited case 

of a signal only when a Dirac impulse is present, the magnitude of the spectrum is flat and the 

slope of the unwrapped phase spectrum determines the position of the impulse. Every burst has 

an impulse-like nature which must be emphasized for the proper localization of the burst. Given 

the above, a magnitude spectrum is obsolete for burst detection and can be set to a constant value, 

just as in the case of the magnitude spectrum for a perfect impulse. Finally, the position of the 

burst can be reconstructed purely from the phase via the following equations: 

where xn denotes the n-th sample of signal x, X[k] is the k-th sample of Fourier transformation of 

the signal, j means an imaginary unit, θ is the phase, and yn is the n-th sample of the signal 

reconstructed from the phase. The reconstructed signal y preserves only non-stationary elements 

of the signal, i.e., harmonic signals occurring from leakage or during the articulation of voiced stop 

𝑋[𝑘] = ∑ 𝑥𝑛∙𝑒
−

2𝜋𝑗𝑘𝑛

𝑁𝑁−1
𝑛=0 , 

 
Equation 28 

𝑋[𝑘] = |𝑋[𝑘]| ∙ 𝑒𝑗𝜃, Equation 29 
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consonants suppressed by the reconstruction. It is convenient to discard samples around the 

beginning and end of the reconstructed signal, as they may reflect the edges of the boxcar function.  

Only the absolute values of the reconstructed signal were analysed because the sign of the 

peak does not add any additional information to a decision. All absolute values were normalized 

to a unity sum, which allows the interpretation of the value as the probability of a burst position. 

Each probability value was compared with the expected distribution of voice-onset-times obtained 

from the manually labeled database. The distribution of the durations between bursts and voice 

onsets was modeled by a gamma distribution with a shape parameter of 3.4 and inverse scale 

parameter of 0.015. The burst was labeled at the position with maximal likelihood. 

SPEECH FEATURES 

Voice onset time (VOT) 

VOT is a well-established metric, which is defined as the duration of the interval between the 

release of a stop consonant and the initiation of vocal fold vibration. Supralaryngeal muscles 

releasing stop consonant and laryngeal muscles initiating vocalization must be synchronized within 

a few dozen milliseconds of VOT. The value of the VOT can be positive, zero, or negative, 

depending on the position of the consonant. A positive VOT is associated with unvoiced 

consonants, and a negative VOT is associated with a voiced consonant. The key factor determining 

the duration of the VOT in voiceless stops is the ability of the laryngeal muscles to initiate voicing. 

Disrupted control over articulators may contribute to a significant deviation in the VOT.  

Generally, an abnormal VOT can be associated with the disrupted coordination of the laryngeal 

and supralaryngeal muscles. In this thesis, the VOT has been assigned to the subsystem of 

phonation in accordance with the literature (Duffy 2013), regarding the fact that only voiceless 

stops were the subject of analysis. 

The VOT was measured as the median duration of the intervals between detected bursts 

and following voice onsets. 

Diadochokinetic rate (DDKR) 

The rate of alternating movements in the diadochokinetic test is traditionally used by speech 

pathologists to assess overall oral motor function. The DDKR is defined as the number of syllables 

spoken in a given time period. Decreased DDKR refers to deteriorated articulatory performance. 

The DDKR was estimated as the inversion of the median duration between consecutive 

voice onsets. Median was preferred in order to increase robustness against misdetections. 

Vowel duration (VD) 

The slowness of repetitive movements with excessive vocal emphasis typical of ataxic dysarthria 

can propagate into the prolongation of vowels, as measured by VD. 

The VD was estimated as the mean duration of detected voiced intervals. 

Diadochokinetic irregularity (DDKI) 

Involuntary movements can superimpose intended movements of the vocal tract, making the pace 

of the alternating motion more irregular. Increased values of DDKI can be accounted 

preeminently to involuntary movements of the speech apparatus, but the contribution of disturbed 

timing should also be assessed, as timing deficits, such as the acceleration of speech in PD, may 

project into the overall irregularity. 
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The DDKI was estimated as the standard deviation of the measured durations between 

consecutive voice onsets.  

The standard deviation of power (stdPWR) 

Diadochokinesis represents a task performed within one respiratory cycle as a series of isolated 

syllables. Airflow between syllables can be stopped rapidly only by a complete blockage of airflow 

using articulators or adduction of the vocal folds. Steady loudness then arises naturally from the 

fact that the speaker does not have to vary his respiratory effort to perform the DDK task. Thus, 

difficulties with respiratory and laryngeal/supralaryngeal control can be the hypothetical cause. 

The values of the feature can be increased substantially due to incoordination or involuntary 

movements. The literature associates increased values typically with ataxic and hyperkinetic 

dysarthria (Kent et al. 2000, Hartelious et al. 2003), but they can also be expected in other 

dysarthrias of various neurogenic origin, such as stroke (Kent et al. 1999). 

The feature stdPWR in DDK was calculated using the same methodology as was used for 

stdPWR in connected speech, as described in section 2.3.3 CONNECTED SPEECH in chapter 

STANDARD DEVIATION OF POWER (STDPWR), page 38. 

2.4 MODELING OF SPEECH PATTERNS 

2.4.1 Normalization 

A statistical model was established in order to increase the interpretability of individual features 

and speech patterns (see Figure 7). Normalization was realized by comparing a measured value of 

each speech feature with normative values measured on a group of HC matched to the sex and 

age characteristics of the examined speaker. Normative values were estimated via the following 

process. 

A sample of at least 30 healthy individuals with ages and/or sex similar to each examined speaker 

was selected from the precomputed database of healthy controls using the following rules: 

 If the number of speakers with the same sex and maximal age difference less than 5 years in the database 

of healthy controls is greater than 30, consider this sample as a matched group. 

 Else, apply the same rule with the condition of maximal age difference less than 10 years. 

 Else, apply the same rule with the condition of maximal age difference less than 20 years. 

The threshold rules are more convenient than the simple selection of an exact number of similar 

speakers because it allows the selection of a larger group of speakers with a sufficient margin of 

error. Normative data were calculated for an age series from 30 to 75 years with a step of one year 

separately for each sex. 

Each speech feature was modeled by a cumulative distribution function of values measured on 

matched healthy individuals. The distribution function was described as a normal distribution, log-

normal distribution, or gamma distribution (see APPENDIX B: NORMALIZED VALUES OF SPEECH 

FEATURES, page 105). The mean and standard deviation of the normal distribution were estimated 

by the median and rescaled median absolute deviation, respectively. The parameters of the 

lognormal distribution were determined similarly by using values transformed via base 10 

logarithms, and the parameters of the gamma distribution were estimated via maximum likelihood. 
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Further, the parameters of  the distribution sorted by age were zero-phase filtered by a moving 

average with a duration of 5 years in order to reduce the random variation of the sample. 

The probability of each speech feature was calculated by inspection of the corresponding 

lower tail, upper tail, or both tails of the cumulative distribution function, when speech abnormality 

was related to decreased value, increased value, or both directions, respectively. Normalized values 

were also expressed in terms of z-scores. Z-scores of features with non-normal distributions were 

calculated by transforming the estimated probability.  

2.4.2 Combination of probabilities 

The evaluation of the speech dimension or speech patterns requires that the evidence of individual 

speech features be combined. The normalized values of speech features expressed in a z-score can 

be combined according to Lipták (1958): 

where Z represents the resulting data fusion, Zi, is the z-score of hypothesis i, wi is the weight 

assigned to hypothesis i, and G is the total number of hypotheses. The presented equation is a 

weighted version of the z-transform test introduced by Stouffer et al. (1949), which is referenced 

by some authors as the weighted Stouffer’s method, weighted z-test, or weighted inverse normal 

method. Lipták’s method reduces to Stouffer’s method in the case when all of the weights of the 

hypotheses are equal. The original motivation of the weighting was to combine the results of 

independent studies with regard to their power. Division by the squared sum of squares ensures a  

 
 
Figure 7: Illustration of the normalization process. 
† The choice between the cumulative distribution function Φ(Fx) describing p(Fx≤fx), complementary cumulative distribution function 1-
Φ(Fx) describing p(Fx>fx), or analysis of both tails depended on the hypothesis and design of each feature specified in section 2.3 Acoustic 
analysis, page 20. 
Symbols and abbreviations: Fx = a generic speech feature, fx = measured value of a generic speech feature, Φ = cumulative distribution 
function, p = probability. 
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unity variance for the Z statistic. The combined probability of the null hypothesis corresponding 

to Z can then be calculated directly from the inverse cumulative standard normal distribution.  

Unlike a simple weighted average of z-scores, Lipták’s method allows one to constitute 

stronger support for a decision when the effect is evidenced simultaneously in multiple hypotheses. 

Even insignificant results (e.g., p>0.05) can be combined into a significant one (e.g., p<0.05) using 

Lipták’s approach. Therefore, particular attention should be paid to assumptions of independence. 

Many speech abnormalities can propagate into multiple speech features, which is not typically the 

result of the multidimensionality of a disorder or the dependence of the hypotheses. For 

illustration, a speaker with hoarseness is more likely to have an increased harmonics-to-noise ratio 

as well as shimmer, even though no causality between the metrics has been established. 

Nevertheless, some speech features, namely EFn_m and EFn_SD, are dependent by definition, 

since an increased EFn_SD implies an increased EFn_M. Although, the assumption of 

independence is violated in these rare cases, the root of the sum of squares in the denominator of 

Equation 31 is still desired for more practical reasons. The root of the sum of squares of weights 

allows the introduction of negative weights without an additional correction of the sign. Lipták’s 

approach is thus employed here as a convenient tool for information fusion that provides an 

interpretable insight into complex patterns of acoustic speech features.  

2.4.3 Pattern analysis 

Speech patterns were analyzed via the aggregation of probabilities according to Lipták (1958). 

Here, we depart from the original idea of the method (Lipták 1958) and combine probabilities 

based on the significance of the observed effect in the analyzed pattern. This new approach of 

pattern recognition hence referred as supervised weighted fusion of z-scores (SWFZ) has not been 

utilized previously. A pattern is represented as a linear combination of features defined by 

Equation 31, which makes results highly interpretable and allows the straightforward 

decomposition of a speech pattern. The weight of an individual speech feature can be seen as an 

enumerated importance of the feature for a description of a pattern, or, in other words, the degree 

to which we trust the feature in terms of the recognition of a pattern. The training of the pattern 

by this methodology requires only that the weights of individual features be estimated. The 

estimation of weights can follow the assumed importance of a feature for distinguishing 

dysarthria–a comprehensive summary of characteristics and their importance can be found in 

Duffy (2013)–or can be realized by minimizing a cost function on the training dataset. Note that 

both solutions can be similarly successful, but we will focus here on the estimation from the dataset 

because it requires no expert knowledge about relations between clinical characteristics and 

acoustic features. 

Weights were estimated on the training dataset using a batch gradient descend and the 

following procedure. A binary hypothesis about the presence or absence of the pattern for one 

particular speaker was introduced, and the level of significance was set to p<0.05. Then the 

combined z-score was mapped to the binary decision via a logistic function defined as: 

where Z is the aggregated z-score, Z0 is the one-tailed z-score corresponding to the level of 

significance, and s is steepness of the curve. Steepness was set to the value of 1. Weights were 

𝑓(𝑍) =
1

1+𝑒−s∙(𝑍−𝑍0) , 
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randomly initialized and optimized using a batch gradient descend with cost function J, which was 

defined as: 

where W represents the set of optimized weights, i denotes one particular speaker out of M 

speakers total, Yk is the reference label of the speaker, and Yk hat is the predicted label determined 

by the logistic function of the aggregated z-score f(Zk). The gradient was estimated analytically 

from Equation 31, and the learning rate was set to 10-4. A vanishing gradient problem was 

prevented by saturation of the z-score to the maximal absolute value of 5 standard deviations. The 

saturation was employed also in testing and routine applications in order to diminish the effect of 

individual extremes on the combined z-score.  

The aggregated z-score of the pattern can be calculated for each speaker from the known 

z-scores of individual speech features measured on the speaker and the weights of individual 

speech features from the analyzed pattern using Equation 31. The value of the aggregated z-score 

represents the salience of the speech pattern and can also be interpreted in terms of the probability 

of the speech pattern. A hypothesis concerning the presence of the speech pattern can be then 

tested by a defined level of significance. 

2.4.4 Pattern decomposition 

When the weights of individual features of the pattern are known, any speech pattern of an 

individual speaker can be decomposed using the following procedure. Features with a positive 

product of wi and Zi make a speech pattern more salient. To the contrary, features with a negative 

product of wi and Zi balance a speech pattern to normality. The degree to which a speech feature 

with the positive product of wi and Zi influences the speech pattern of an individual speaker’s 

contribution can be computed by the following equation: 

where Ci is the relative contribution of the speech feature i with weight wi and the individual 

speaker’s performance Zi to the speech pattern supported by G speech features with a positive 

product of wi and Zi. The scores of features can be grouped together, which allows the individual 

speech pattern to be assessed from a different perspective, e.g., speech dimension. Grouped 

contributions can be estimated by averaging when the number of descriptors varies across groups. 

The contribution of a feature or a dimension to the speech pattern illustrates the composition of 

the speech disorder in a clear and understandable way. 

2.4.5 Excitatory and inhibitory speech patterns 

Here, excitatory and inhibitory speech patterns are introduced in order to simplify the 

categorization of acoustic speech abnormalities into a comprehensible form that will not interfere 

with established categories of dysarthria. The idea of inhibitory and excitatory speech patterns was 

coined by the author of this thesis after the recognition of a considerable overlap between 
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dysarthria characteristics and the pointlessness of categorization based purely on instrumentation 

data (see section 1.3 EXAMINATION OF DYSARTHRIA, page 4). Inhibitory and excitatory tendencies 

in speech patterns can be seen as two antagonistic forces competing persistently underneath any 

speech movement. When the balance between inhibition and excitation in motor control circuitry 

is disrupted, the motor activity tends to be reduced or exaggerated, respectively. An inhibitory 

speech pattern can be associated with hypokinesia of speech movements, whereas an excitatory 

speech pattern can be associated with hyperkinesia of speech movements. The typical 

characteristics of an inhibitory speech pattern can be demonstrated on hypokinetic movement 

disorders, such as PD, whereas an excitatory speech pattern can be demonstrated on hyperkinetic 

movement disorders, such as HD.  

Note that the nomenclature for the dysarthria categories differentiates hyperkinetic and 

ataxic dysarthria, but movement disorders include ataxia as a special form of hyperkinetic 

movement disorder. The definition of excitatory and inhibitory patterns of speech features 

introduced here relates to movements; thus, ataxic dysarthria is assigned to the excitatory pattern. 

Indeed, discoordination associated with ataxic dysarthria manifests naturally with the exaggeration 

of movements. 

Speech tendencies that are related rather to the severity of the speech disorder were pooled 

in an unspecific speech pattern introduced for completing the set of speech patterns. Unspecific 

speech patterns also include features that otherwise represent inhibition but are used frequently as 

a strategy for the compensation of a speech disability, such as slow NSR. Acoustic features 

employed in this thesis for a description of these patterns are listed in section 2.7 CLASSIFICATION 

EXPERIMENT, page 48.  

2.5 INTERPRETATION AND VISUALIZATION OF 

RESULTS 

Several factors should be taken into account by the examiner in order to avoid a flawed inference 

concerning a speech disorder. First, a normalized result reflects the cumulative probability of the 

raw value in the healthy population and should be interpreted as such. The value of a normalized 

feature refers to the rareness of the raw value in the healthy population and does not imply 

malfunction automatically. An abnormal value of a speech feature may be observed even in a 

healthy speaker demonstrating a speech idiosyncrasy. The examiner can deduce a speech deficiency 

from the low incidence of the feature in the healthy population and/or concurrence of multiple 

abnormal speech features. Second, the performance of the task can be influenced by incorrect 

instructions or a lack of understanding of the correct instructions. The diagnosis of a severe speech 

disorder based on the performance of a single speech task should be questioned because a severe 

speech disorder will more likely manifest in more than a single task. The reiteration of the speech 

task in question is highly recommended in order to confirm a suspicion about a speech disorder 

arising from a single task. A consistently abnormal result in a single task for different speakers may 

indicate an issue with the examiner. The resulting speech patterns should be interpreted in the 

context of the overall examination with regard to pattern composition. When the speech pattern 

is not well-spread, the reliability of the finding should be considered.  

The complicated process of interpretation cannot be realized by the fully automated 

approach because the diagnosis of a speech disorder is inferred by more factors than just the 
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acoustic features. Therefore, the emphasis is on the lucid reporting of results. The results of a 

speech analysis were mediated in a comprehensive report with following qualities (see Figures in 

section 3.5 CASE STUDIES, page 61). First, normal values defined by p>0.05 were plotted using 

green rounded shapes, such as circles or leaf-like shapes. Abnormal values defined by p<0.05 were 

emphasized with red-cornered shapes, such as squares or triangles. Individual features were 

arranged in a radar chart according to their hypothesized dominant speech dimension. Speech 

features were labeled with an abbreviation and a numerical code corresponding to speech task. 

Each speech dimension was evaluated by the combined probability (see section 2.4.2 

COMBINATION OF PROBABILITIES, page 43) of all of the corresponding speech features with equal 

weighting. The normality or abnormality of the speech dimension was indicated by the shape and 

color of the dimension labels on the radar chart. Features were also combined with equal weights 

to corresponding speech tasks. The performance of each task was plotted in a bar chart. Labels of 

speech tasks were denoted with a numerical code, which provided a reference for the numerical 

codes for each task for the individual speech features in the radar chart. The brief results of the 

speech pattern analysis were plotted in the bar graph. A table of results then provided a reference 

for all abbreviations, values, and descriptions. As a result, an examiner can find the significant 

features on the top of the table easily, as all items in the table were sorted by their significance. Z-

scores were also reported in the table, supplementing the information about the resulting trend. 

Results which were higher than norm had a positive z-score; to the contrary, a negative z-score 

meant that the result was less than the norm. The table also suggests a defined interpretation of 

significant results with respect to the trend of an abnormality. When a subject is studied 

longitudinally, the results summarized in one file can be viewed individually by selecting a recording 

session. Clinicians may be interested more in the development of individual features over time. 

Therefore, longitudinal graphs of individual features were also provided by following the same 

visual philosophy described above. Finally, a quick overview of significant speech patterns was 

offered via a  pie chart and table reporting on the contributions of the speech dimensions and 

features associated with a speech pattern.  

The visual form of the report aimed to satisfy busy clinicians as well as patients uninitiated 

in speech analysis. A fully automated procedure for the generation of a described graphical report 

was implemented. The report document was coded in HyperText Markup Language (HTML), 

with figures using Scalable Vector Graphics (SVG). 

2.6 STATISTICAL ANALYSIS 

The normality of speech features was tested using the Kolmogorov-Smirnov test. Normalized z-

scores of speech features were preferred for the analysis over raw values of speech features, as 

they allow groups to be compared regardless of age and sex differences. All disease groups were 

compared only to the HC in order to test for the presence or absence of a speech symptom within 

the group, which not only simplified the interpretation of the results but also reduced the number 

of comparisons, thus preventing unnecessarily wide confidence intervals. A clinician can consider 

the rate of progression, medication, or disease duration from an abnormality of an acoustic feature 

but could hardly infer a differential diagnosis based the severity of an individual acoustic feature. 

Thus, a comparison between diseases could provide redundant or even misleading information for 

practical application. A group comparison of normally or log-normally distributed features was 

conducted via a one-way ANOVA, followed by the Westfall–Young procedure for multiple 

comparisons. Gamma-distributed features were compared via the Kruskall-Wallis test, followed 

by a many-to-one comparison according to Gao et al. (2008) with a Hochberg’s step-up procedure. 
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The correlation of normalized speech features with clinical scales was carried out via Pearson’s 

correlation coefficient. The level of significance was set to 0.05. A statistical comparison intended 

to demonstrate the different trends in speech disorders for given groups was carried out in order 

to provide a summary for interpreting the results of individual speakers. In this scenario, the 

rejection of the hypotheses is more favorable for the determination of whether a symptom is 

group-specific or not. Therefore, the family-wise error rate of the feature set was not controlled in 

order to avoid inflation of the type II error.  

2.7 CLASSIFICATION EXPERIMENT 

A classification experiment was introduced in order to estimate the incidence of speech patterns 

and to compare the performance of the SWFZ for the modeling of speech patterns with state-of-

the-art classification techniques. Only inhibited, excited, and unspecific speech patterns were 

subject to analysis. Hypothetically, all three patterns may be present in a single subject. Therefore, 

the classification categories were defined by following rules that assigned only one category to a 

subject.  

 Subjects with no inhibitory, excitatory, or unspecific speech pattern were categorized as no 

pattern present.  

 Subjects with only an inhibitory speech pattern were categorized as inhibitory.  

 Subjects with only an excitatory speech pattern were categorized as excitatory.  

 Subjects with both inhibitory and excitatory speech patterns were categorized as mixed.  

 Subjects with no inhibitory and/or excitatory speech patterns showing an unspecific 

speech pattern were categorized as unspecific.  

Inhibitory and excitatory speech patterns are more vital for the description of trends in speech 

movements than an unspecific speech pattern that is only complementary and could be expected 

in any disease. Therefore, inhibitory and excitatory speech patterns were assigned a higher priority 

than unspecific speech patterns. The incidence of each speech pattern, including none, inhibitory, 

excitatory, mixed, and unspecific, in a group was calculated as  the proportion of subjects labeled 

with the respective category within the group.  

A subsample of speakers that manifested a speech disorder was selected from the dataset 

for classification experiment via the following criteria. Only PDU and PDT subjects with speech 

item of UPDRS III equal to 1 or higher were included. Only MSA and PSP subjects with speech 

item of NNIPPS equal or higher than 1 were added to the subsample. Only HDU and HDT 

subjects with speech item of UHDRS equal of 1 or higher were accepted for the subsample. Only 

MS and CA subjects with mild dysarthria identified by a speech-language pathologist were added 

to the subsample. All HC and RBD subjects were included unconditionally.  

An inhibitory speech pattern was described by the stdF0 measured on the reading passage 

and monologue and the stdPWR measured on the reading passage. A model of an inhibitory 

speech pattern was trained on subjects with PDU and PDT versus subjects with HC. An excitatory 

speech pattern consisted of stdPSD, stdF0, and DVA, all measured on sustained phonation of the 

vowel /A/. A model of an excitatory speech pattern was trained on subjects with HDU, HDT, 

MSA, and CA versus HC. An unspecific speech pattern was based on features that hypothetically 

represented an unspecific speech abnormality, were related to the severity of a speech disorder, or 

were found to be abnormal in various diseases: VOT, DDKR, and DDKI measured on the 
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diadochokinetic task; RI measured on the rhythm task; EFn_M measured on the sustained 

phonation of vowel /I/; jitter and HNR measured on the sustained phonation of the vowel /A/; 

DUS, RFA, and DPI measured on both the reading passage and monologue; GVI measured on 

the monologue; and NSR measured on the reading passage. A model of an unspecific speech 

pattern was trained on subjects with PDU, PDT, HDU, HDT, CA, and MS versus HC. All models 

of speech patterns were always estimated on the training dataset. The number of subjects with a 

disease and HC in the training dataset was balanced by oversampling. 

The overall incidence of speech patterns in the dataset was estimated via the leave-one-out 

cross-validation process. Each subject was excluded from the dataset and speech patterns were 

trained on the remaining subjects accordingly to PATTERN ANALYSIS, 44. Then trained speech 

patterns were applied to the excluded subject, and the p-value was calculated. The excluded subject 

was tested at the significance level 0.05 for each pattern analyzed and labeled with the decision. 

The process was repeated iteratively for all of the subjects in the database.  

Leave-one-out cross-validation allows the unambiguous decision for each subject to be 

estimated, but models across all iterations are highly correlated, as only one subject is missing 

during each training iteration. Therefore, a randomized cross-validation realized by the process 

below was preferred for the estimation of the performance variability and a comparison with state-

of-the-art classifiers. Iteratively, the dataset was stratified randomly in a training sample containing 

75% of the subjects for each group and a testing sample containing 25% of the subjects for each 

group. In each iteration, the classifier was trained only on training data, and the trained model was 

applied to testing data. The incidence of speech patterns was calculated on the training sample. 

The process was repeated for 30 iterations. The SWFZ was compared with the following 

classifiers: 

 Neural network with one hidden layer of five neurons, a positive linear transfer function 

in the hidden layer, and a sigmoid activation function at the output layer trained using the 

mean squared error loss function. 

 Naïve Bayes classifier with probabilities calculated via kernel density estimation using a 

Gaussian window. 

 SVM with radial basis function optimized via a grid search. The optimal combination was 

selected as the one with the maximal sum of incidences of associative diseases, e.g., 

incidences of inhibitory speech patterns for PD. 

All classifiers were trained and tested within the same iteration, i.e., the random samples were 

identical for all classifiers. The incidences of speech patterns estimated by all classifiers were 

compared across all repetitions using Friedman’s test. Finally, the overall performance was 

described as the mean and standard deviation of individual incidences across all iterations. 

2.8 QUESTIONNAIRE FEEDBACK FROM 

CLINICIAN 

The proposed methodology for speech assessment was implemented in © MATLAB (MathWorks, 

Natick, Massachusetts, USA), including a simple graphical user interface (see APPENDIX C: 

SOFTWARE APPLICATION, page 115). The application was used experimentally by experienced 

speech pathologist Hana Růžičková starting in July 2017 and ending in September 2018. The 

design of the application was developed systematically to meet the specific requirements of clinical 
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practice. The applicability of the system was investigated via a questionnaire (see Appendix D: 

Questionnaire feedback, page 121) in terms of customer satisfaction (questions 1-5), clinical 

applicability (questions 6-10), interpretability of provided results (questions 11-15), benefits 

(questions 16-20), and limitations (questions 21-25). Additional information was gathered through 

a series of conversations and observations of clinical examinations. The questionnaire was 

answered September 22, 2018, more than one month after the release of the final version. Speech 

pathologist Hana Růžičková scored every question on the scale from -5 to +5, where a more 

positive value represents a more positive answer, and, conversely,  a more negative value means a 

more negative answer. The sign of the scores was corrected to reflect the overall positivity or 

negativity of the performance. Scores were expressed as a percentage, where -5 corresponded to a 

0 % and +5 to a 100% performance. Specific comments were also recorded.  
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3 

RESULTS 
 

God is just giving me here my real perfect kind of a chance to just see and to 

just feel exactly how my own mother saw and felt. 

–Woody Guthrie, Personal Correspondence, 1956 

 

thorough evaluation of  the methodology in terms of accuracy, a comparison of the groups 

in the database,  a comparison of the SWFZ with conventional classifiers for pattern 

recognition, and  a demonstration of clinical applicability is provided in this chapter. 

Generally, an accuracy analysis was performed across various diseases, including mild to severe 

stages of speech disorder, in order to demonstrate the validity of the methodology. The data used 

for evaluation were mostly a subset of the database presented in this thesis. Nevertheless, 

additional recordings that did not belong to the presented database were included to increase the 

sample size and make analysis more challenging. An analysis of the database is presented here in 

the context of previous findings or hypotheses in order to make the results more informative. The 

classification experiment provides information on how the proposed speech patterns are 

distributed across various diseases with regards to the comparability with current methods for 

pattern recognition. Clinical applicability is considered via the questionnaire survey of the clinician 

and two case studies, which are examined in light of the patients’ histories and the author’s 

suggested interpretations of two complex acoustic assessments. 

A 
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3.1 TRACKING THE ACCURACY OF THE ANALYSIS 

3.1.1 Connected speech 

Accuracy was tested on intervals of respiration and speech/pause, where speech includes both 

voiced and unvoiced intervals of speech in order to simplify the presentation of the result. 

Segmentation was evaluated on 271 recordings of passages being read and monologues selected 

randomly from a dataset containing HC, RBD, PD, MSA, PSP, and HD patients. Intervals of 

speech, pause, and respiration obtained by manual segmentation were compared with the outcome 

of the automated segmentation in terms of the F1-score. Additionally, the detection accuracy was 

measured on the voice activity detector ITU-T G729B (International Telecommunication Union 

1996) and the pause detector for dysarthria by Rosen et al. (2010). The accuracy of detection was 

evaluated via F-score. Only detected labels paired with reference labels within tolerance were 

considered to be true positives. All detected labels outside tolerance were marked as false positives. 

All remaining reference labels were treated as false negatives. The tolerance for pauses was defined 

as a quarter of the duration of the corresponding pause. The tolerance for respiration was 

determined to be the duration of the corresponding respiration. Each recording was evaluated via 

F-score. More information about manual segmentation and evaluation can be found in the study 

by Hlavnička et al. (2017). 

Figure 8 illustrates the accuracy of the automated segmentation. The proposed method, 

with an efficiency of pause detection of 69.1 ± 20.3% outperformed the pause detector by Rosen 

et al. (2010), with an efficiency of 32.8 ± 12.3%, and the ITU-T G.729B (International 

Telecommunication Union 1996), with an efficiency of 35.4 ± 7.4%, across all pause lengths. 

Respiration was detected efficiently with a score of 73.8 ± 20.3%.  

 

 
 
Figure 8: Detection efficiency of pause and respiratory intervals in connected speech.  
The score is plotted as a cumulative function of interval length, i.e., the accuracy for 100 milliseconds in length was calculated on all 
intervals longer than 100 milliseconds. (A) Comparison of the proposed method with a pause detector by Rosen et al. (2010) and the ITU-
T G.729B (International Telecommunication Union 1996). (B) The efficiency of the proposed method in detection of respiratory intervals. 
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3.1.2 Rhythm 

The detection of syllable nuclei was evaluated by comparing the outcome of the automated 

algorithm with the manually identified position of syllables in 207 recordings obtained from 109 

subjects. The database included HC, PD, MSA, PSP, and HD subjects and subjects with 

ephedrone Parkinsonism. The error rate was calculated as the number of error detections divided 

by the total number of syllables. The accuracy was determined as the complement of  the error out 

of 100%. The overall accuracy was estimated as the mean accuracy across all recording in the 

database. More information about the database, manual segmentation,  the evaluation process, and 

deep analysis can be found in the study by Rusz et al. (2015A). 

The algorithm showed a very high overall accuracy of 99.6 ± 2.0%. The majority of the 

errors consisted of misclassified respirations. 

3.1.3 Diadochokinetic task 

The accuracy of segmentation was evaluated on a very large dataset of 698 recordings. All possible 

data were included in order to demonstrate the reliability of the method. Therefore, more groups 

than the database used in the rest of the dissertation were covered. The enhanced dataset consisted 

of 317 recordings of patients with Parkinson’s disease, of which 258 recordings were of patients 

treated by deep brain stimulation, 76 recordings were done of patients with dystonia in both the 

ON and OFF periods, 191 recordings were made of healthy speakers, 78 recordings were from 

speakers with Huntington’s disease, and 36 recordings were made of patients with rapid eye 

movement sleep behavior disorder. The majority of the patients manifested severe dysarthria. Most 

subjects were represented by two recordings. The maximal number of recordings for one subject 

was limited to three.   

All recordings were segmented manually by Michal Novotný. The rules for segmentation 

were described in detail by Novotný et al. (2014). The method proposed in this thesis was 

compared with the method by Novotný et al. (2015), which represents the advanced version of 

the original paper (Novotný et al. 2014). Additionally, the accuracy of the teager energy operator 

(TEO) by Hansen et al. (2010), Bayesian step change-point detector (BSCD) by Čmejla et al. 

(2001), and Bayesian autoregressive change-point detector by Čmejla et al. (2004), representing 

the state-of-the-art in burst detection, were investigated. 

The accuracy of burst detection, voice onset detection, and accuracy of speech features 

were examined independently in order to demonstrate the propagation of errors into the resulting 

speech features. Bursts were detected in the interval preceding each voice onset determined by 

manual segmentation, which ensured that the reported results would not be biased by the accuracy 

of voice onset detection. Bursts and voice onsets were both evaluated using the empirical 

cumulative distribution of the absolute difference between the reference label and detection. The 

errors of each recording were averaged to prevent the unequal influence of recordings with a high 

number of syllables. Errors were then expressed via cumulative distribution to increase 

intelligibility of comparison. All parameters of models, such as the order of linear predictive coding 

or possible systematical errors, were compensated to obtain best results. Speech features were 

evaluated via Pearson’s correlation coefficient between features computed from reference labels 

and features computed from detected labels. 
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The evaluation of detection accuracy is illustrated in Figure 9. The proposed method 

outperformed other methods in terms of the detection of bursts and voice onset. The increased 

precision can also be observed in a higher correlation between the computed and reference speech 

features (see Table 3). 

3.1.4 Sustained vowels 

The accuracy of segmentation was evaluated on a database containing 22 HC subjects (11 men, 11 

women), 22 patients with RBD (11 men, 11 women), 22 patients with PD (10 men, 12 women), 

21 patients with MSA (9 men, 12 women), 18 patients with PSP (12 men, 6 women), and 20 

patients with HD (9 men, 11 women). Each recording was segmented manually into voice and 

silence categories based on the inspection of the oscillogram and spectrogram. Only a periodic 

signal with a fundamental frequency from 50 to 500 Hz was labeled as voiced. Manual labels were 

then compared with labels obtained by automated segmentation. Only intervals with error less 

than 100 milliseconds were accepted as true positives. Undetected intervals of voice were 

considered to be false negatives. This rigorous approach was preferred because the speech features 

of the task can be influenced significantly by any misdetection. Undetected intervals of silence 

were accounted for as false positives. Each recording was evaluated for precision and recall and  

with an F-score. Overall scores were averaged across all recordings in the dataset. The results of 

the proposed method were compared with PRAAT in standard settings (voicing threshold of  0.45) 

and PRAAT with settings adjusted to a threshold similar to the one used in the proposed 

segmentation (voicing threshold of 0.24) and a much lower threshold for demonstrating the trend 

(voicing threshold of 0.2). 

The accuracy of speech features was evaluated on 505 synthetic replicas of the sustained vowels 
/A/ and /I/. Synthetic replicas were preferred, as their parameters are perfectly known and are 
not biased by an error in measurement. Replicas were synthesized from parameters measured 
semi-automatically on the database. Values of modal F0, jitter, shimmer, HNR, the position and 
 

 
 

Figure 9: Cumulative distribution of segmentation errors in the diadochokinetic task.  
The values of the cumulative distribution indicate how many recordings showed an error lower than the requested precision value, e.g., 
TEO showed an error of burst detection lower than 5 milliseconds for approximately 75% of recordings.  
Abbreviations: BACD = Bayesian autoregressive change-point detector (Čmejla et al. 2004), BSCD = Bayesian step change-point detector 
(Čmejla et al. 2001), TEO = teager energy operator (Hansen et al. 2010), ms = milliseconds. 
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shape of each glottal pulse, the position of each subharmonic interval, as well as the depth of 

alternation of subharmonics were known for each synthetic signal. More information about 

synthesis as well as evaluation can be found in Hlavnička et al. (2019). 

The accuracy of F0 detection was estimated by the mean semitone error (ME), standard 

deviation of error in semitones (SDE), root mean square error in semitones (RMSE), and median 

absolute semitone error (MAE), as defined below: 

where en is the difference between the n-th estimation of the measured value �̂�𝑛 and the reference 

value 𝑢𝑛, and N is total number of measurements. Only intervals that showed consent between 

the voiced/unvoiced decisions made by the algorithm and the reference were used in order to 

prevent bias caused by errors in voiced/unvoiced decisions. The results were compared with a 

large set of publicly available detectors. As some detectors may be susceptible to subharmonics 

and some not, the metrics was calculated on both modal F0 and F0 with regards to the 

subharmonics, i.e., modal F0 was corrected to F0/2 during subharmonic intervals. The results with 

the lowest overall RMSE were selected as representative of the performance of the detector. 

The accuracy of subharmonic detection was evaluated via F-score, precision, and recall, 

where only the edges of intervals within 100 milliseconds tolerance around the reference value 

were accepted as true positives. All redundant detections or detections outside tolerance were 

accounted for as false positives. All undetected edges of intervals were considered to be false 

negatives. Additionally, the presence or absence of subharmonics detected by the algorithm was 

compared with the reference. All results were averaged across the database.  

The proposed method for the estimation of jitter, shimmer, and HNR based on 

normalized cross-correlation was compared with PRAAT (Boersma and Weenink 2018). The error 

of prediction was estimated as the absolute difference between measurement and reference.  

 

 Novotný et al. (2014) Proposed method 

ρ (VOT) 0.34 0.73 
ρ (DDKR) 0.94 0.98 
ρ (DDKI) 0.91 0.88 
ρ (VD) 0.75 0.94 

Table 3: Correlations between the reference and automated speech features.  
Abbreviations: ρ = Pearson’s correlation coefficient, VOT = voice onset time, DDKR = diadochokinetic rate, DDKI = diadochokinetic 
irregularity, VD = vowel duration. The computations of these features are described closely in section 2.3.4 DIADOCHOKINETIC TEST in chapter 
SPEECH FEATURES, page 41. 
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The evaluation of segmentation is summarized in Table 4. The proposed method achieved 

sufficient accuracy. The PRAAT showed good accuracy after lowering the decision threshold 

towards reduced periodicity. The default threshold performed with poor precision.  

Figure 10 illustrates the accuracy of F0 detection compared with publicly available 

detectors. The majority of classifiers showed a lower RMSE for F0 regarding subharmonics, which 

limits their applicability in the assessment of phonatory dysfunction. The proposed method 

showed high accuracy for detection of modal F0 as well as for detection of subharmonic intervals 

(F-score= 91.59% ± 21.23 standard deviation (SD), mean precision= 92.43% ± 22.04 SD, and 

recall= 90.21% ± 23.19 SD). The detector decided reliably if subharmonics were present or absent 

in the recording (97.03% accuracy, 99.4% sensitivity, and 93.37% specificity). 

Table 5 summarizes the median errors for each feature measured by PRAAT and the 

proposed method. The median was preferred in order to avoid bias caused by extreme values 

consequent to the erroneous tracking of the fundamental frequency. 

Hypernasality measures were not validated within the scope of this thesis since the method 

was not developed by the author of the thesis, but the results of the original work will be cited 

here for completeness. Novotný et al. (2016) compared automated features with the perceptual 

ratings of 37 speakers with HC, 37 speakers with PD, and 37 speakers with HD and reported a 

strong correlation with perceptual ratings for EFn_M (r=0.87, p<0.001) as well as for EFn_SD 

(r=0.79, p<0.001). 

3.2 STATISTICAL ANALYSIS 

Normative data, information about units, and the distributions of individual speech features 

measured on HC can be found in APPENDIX A: NORMATIVE DATA FOR THE CZECH LANGUAGE, 

page 95. Characteristics of the normalized values of all speech features and the results of omnibus 

tests are provided in APPENDIX B: NORMALIZED VALUES OF SPEECH FEATURES, page 105. Table 

6 and Table 7 summarize the comparison of all disease groups to HC. The hypotheses for all 

features are indicated for each tested tail in the interpretation column in Table 6 and Table 7. The 

vast majority of speech features showed a significant abnormality for at least one disease group. 

Only the features of RA in rhythm, EFn_SD in the sustained vowel /I/, AST in the monologue, 

and DUF in the reading passage and monologue showed no significant effect in the omnibus test. 

Insignificant effects that relate to characteristics of a disease or were found significant in previous 

studies or may be hypothetically present are marked in Tables 1 and 2 in order to avoid 

misinterpretation of results due to the randomness of the sample. Table 6 and Table 7 can then be 

used as a guide through the complicated trends of acoustic speech features. No correlations 

between acoustic measures and clinical scales were found. 

 Precision Recall F1 

 Mean / SD Mean / SD Mean / SD 

Proposed 99.41 / 4.45 99.72 / 2.94 99.49 / 3.49 
PRAAT (TH = 0.45) 77.6 / 32.02 96.84 / 11.6 82.12 / 27.02 
PRAAT (TH = 0.24) 88.61 / 23.43 98.2 / 8.94 91.23 / 18.81 
PRAAT (TH = 0.20) 89.54 / 22.45 98.13 / 9.34 91.9 / 18.01 

Table 4: Segmentation accuracy in sustained vowels expressed in percent. 
Abbreviations: SD = standard deviation, TH = voicing threshold setting in PRAAT. 
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Figure 10: Accuracy of F0 detection by the proposed method and publicly available detectors.  
The asterisk symbol (*) denotes that modal F0 was preferred as the reference F0 for evaluation.  
Abbreviations: DIO = detector by Morise et al. (2009) incorporated in the WORLD vocoder (2018), DYPSA = Dynamic Programming 
Projected Phase-Slope Algorithm by Naylor et al. (2007) released in VOICEBOX (2018), FXAC = autocorrelation of the cubed signal without 
tracking provided in the Speech Filing System (2018), FXANAL = autocorrelation of the cubed signal with tracking by Secrest and 
Doddington (1983) available in the Speech Filing System (2018), FXCEP = Noll’s (1967) cepstrum-based detector implemented in Speech 
Filing System (2018), Harvest = detector by Morise (2017) available in the WORLD vocoder (2018), MBSC = multiband summary 
correlogram by Tan and Alwan (2013) available as shareware code (MBSC, 2018), PEFAC = Pitch Estimation Filter with Amplitude 
Compression by Gonzales and Brookes (2014) available in VOICEBOX (2018), PRAAT_AC = autocorrelation-based detector with 
comprehensive post-processing implemented in PRAAT (Boersma and Weenink 2018), PRAAT_CC = cross-correlation version of the 
PRAAT_AC algorithm (Boersma and Weenink 2018), PRAAS_SHS = subharmonic summation on logarithmic frequency mantissa (Hermes 
et al. 1988) provided by PRAAT (Boersma and Weenink 2018), RAPT = autocorrelation-based detector with a robust algorithm for pitch 
tracking by Talkin (1995) available in VOICEBOX (2018), FXRAPT = robust algorithm for pitch tracking by Talkin (1995) applied on a 
normalized cross-correlation available in Speech Filing System (2018), REAPER = detector David Talkin developed at Google (2018), SHRP 
= Subharmonic-to-Harmonic Ratio Procedure by Sun (2002) and available online (2018), SWIPE = Sawtooth Waveform Inspired Pitch 
Estimator by Camacho et al. (2008) provided in the author’s dissertation (Camacho 2007), YANGsaf = detector from Yet Another Glottal 
source analysis framework (YANGsaf 2018) developed by Kawahara et al. (2016) at Google. 

 

 Error of jitter Error of shimmer Error of HNR 

PRAAT 0.37 4.72 2.36 
Proposed 0.02 2.03 1.69 

Table 5: Median prediction errors measured on the database of synthetic phonations.  
Abbreviations: HNR = harmonics-to-noise ratio. 

 

3.3 CLASSIFICATION EXPERIMENT 

Comparison of the proposed method with state-of-the-art classifiers is summarized in Table 8. 

The repeated measures Friedman’s test failed to reject the hypothesis that type of classifier has no 

effect on estimated incidences [χ2(3)=1.33, p=0.72]. The incidence of speech patterns in the 

database recognized by the supervised weighted fusion of z-scores using leave-one-out cross-

validation is illustrated in Figure 11.  
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Feature  Interpretation RBD PDU PDT MSA PSP HDU HDT CA MS 

DDK           
 VOT ↑ Disrupted coordination of laryngeal and supralaryngeal muscles. 

Decreased ability of laryngeal muscles to initiate voicing. 
- ** - *** *** *** *** *** *** 

 DDKR1 ↓ Decreased rate of articulation. * + * *** *** *** *** *** ** 
 VD ↑ Slow movements and excessive vocal emphasis manifested by 

abnormally prolonged vowels. 
- - - *** *** *** *** *** - 

 DDKI ↑ Pace of alternating motion is more irregular due to impaired 
timing, planning, or involuntary movements. 

* * *** *** *** *** *** *** *** 

 stdPWR ↑ Excess loudness variation due to involuntary movements of 
respiratory muscles or discoordinated phono-respiration. 

- - - *** *** *** *** *** - 

Rhythm           
 RA2 ↑ Accelerating pace, also called oral festination. - ++ ++ ++ ++ - - - - 
 RI ↑ Irregular pace due to decreased speech motor control, 

discoordination, impaired timing, or presence of involuntary 
movements. 

- - * *** *** *** *** *** - 

Sustained /I/           
 EFn_M ↑ Increase hypernasality due typically to impaired control over 

elevator muscle of the soft palate. 
- - - ** ** *** *** - - 

 EFn_SD3 ↑ Intermittent hypernasality due to involuntary movements of 
elevator muscle of the soft palate. 

- - - - - + + - - 

Sustained /A/           
 DVA ↑ Voicing stops suddenly due to abnormal laryngeal muscle 

contraction. 
- - - ** - ** *** - - 

 stdPSD ↑ Involuntary movements of articulators, preeminently the tongue. - - - *** - *** *** *** - 
 MPT ↓ Weak laryngeal and respiratory musculature. - - ** ** * *** *** - - 
 stdF0 ↑ Excess variation of fundamental frequency due to involuntary 

movements of laryngeal muscles or deteriorated motor control.  
- - - *** * *** *** *** *** 

 Jitter ↑ Unstable periods of glottal pulses. Associated with hoarseness. - - - - * *** * - - 
 Shimmer ↑ Unstable amplitudes of glottal pulses. Associated with hoarseness. - - - *** *** *** * *** - 
 HNR ↓ Increased noise due to turbulent airflow in vocal folds. Associated 

with hoarseness. 
- * - *** *** *** *** *** *** 

 PSI4 ↑ Vocal folds vibrate with alternating period, amplitude, or both. 
Geometrical or mechanical asymmetry of vocal folds. Associated 
with rough voice, pitch breaks, or special case of diplophonia. 

- - - + + * - - - 

 LSI ↓ Vocal folds started subharmonic vibrations early in the course of 
the phonation. Vocal folds are either more prone to subharmonics 
or neuromuscular control of vocal folds is deteriorated. 

- - - * *** ** *** - - 

Table 6: Summary of acoustic features measured on diadochokinetic task, rhythm, and sustained vowels.  
*** p<0.001, ** p<0.01, * p<0.05, - p>0.05, ++ not significant in the sample but can be distinguishing when present, + not significant in 
the sample but can be expected, up arrows indicate an upper-tail hypothesis (increased when severe), down arrows indicate a lower-tail 
hypothesis (decrease when severe). 
1 findings of slow diadochokinetic rate are not consistent in the literature.  Rusz et al. (2011) and Novotný et al. (2014) reported a 
significantly slower rate on cohorts of early, untreated PD patients. Harel et al. (2004) suggested that the slow rate may not be expected 
when compensatory strategies are implemented. 
2 acceleration of speech rate was observed in parkinsonian speech in studies by Skodda et al. (2010) and Rusz et al. (2015A). Acceleration 
of speech is a specific feature of hypokinetic dysarthria that is distinguishing but not invariably present (Duffy 2013). 
3 intermittend hypernasality is a symptom of hyperkinetic dysarthria (Duffy 2013). Increased EFn_SD in HD was observed by Novotný et 
al. (2016). 
4 increased proportion of subharmonics can be expected in APS possibly due to spasticity (Hlavnička et al. 2019). 

Abbreviations: RBD = rapid eye movement sleep behavior disorder, PDU = untreated Parkinson’s disease, PDT = treated Parkinson’s 
disease, MSA = multiple system atrophy, PSP = progressive supranuclear palsy, HDU = untreated Huntington’s disease, HDT = treated 
Huntington’s disease, CA = cerebellar ataxia, MS = multiple sclerosis, VOT = voice onset time, DDKR = diadochokinetic rate, VD = vowel 
duration, DDKI = diadochokinetic irregularity, stdPWR = standard deviation of power, RA = rhythm acceleration, RI = rhythm instability, 
EFn_M = degree of hypernasality, EFn_SD = intermittend hypernasality, DVA = degree of vocal arrests, stdPSD = standard deviation of 
power spectral density, MPT = maximum phonation time, stdF0 = standard deviation of fundamental frequency, HNR = harmonics-to-
noise ratio, PSI = proportion of subharmonic intervals, LSI = location of subharmonic intervals. 
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Feature  Interpretation Task RBD PDU PDT MSA PSP HDU HDT CA MS 

 EST ↓ Reduced stream of voiced, unvoiced, and pause 
intervals. Typically in consequence to reduced 
range of speech movements and/or decreased 
syllabic rate. 

Reading - - - - ** *** *** - - 
   Monologue - - - * - *** *** - - 

 RST ↓ Reduced stream of voiced, unvoiced, and pause 
intervals. Typically in consequence to reduced 
range of speech movements and/or decreased 
syllabic rate. 

Reading - ** - *** *** *** *** *** - 
             
   Monologue ** ** - *** *** ** - *** - 

 AST1 ↑ Accelerating stream of voiced, unvoiced, and 
pause intervals resulting from increasing rate of 
speech movements. 

Reading - + + + + - - - - 
   Monologue - - - - - - - - - 

  ↓ Decelerating stream of voiced, unvoiced, and 
pause intervals due to fatigue or decreased range 
of speech movements. 

Reading - + + ** + *** + + + 
Monologue - - - - - - - - - 

 DPI2 ↑ Difficulties in initiating speech and/or omission of 
short pauses. 

Reading + * + *** *** *** *** ** * 
   Monologue + * + *** *** ** * - - 
 DVI ↑ Voicing interferes or continues within voiceless 

intervals. Decreased control of laryngeal muscles 
and coordination of laryngeal and supra-laryngeal 
muscles. 

Reading - - - *** *** *** *** *** - 
   Monologue - - - *** *** - - ** - 

 GVI ↓ Decreased ability of vocal folds to stop voicing by 
adduction. 

Reading - - - *** *** *** *** - - 
   Monologue * ** - *** *** ** ** - - 
 DUS ↑ Imperfect articulation of unvoiced stops. 

Unvoiced stops are prolonged or, for more 
extreme values, spirantized. 

Reading - - - *** *** *** *** - - 
   Monologue - - - *** *** *** *** - *** 

 DUF ↑ Gradual weakening of friction in unvoiced 
fricatives. 

Reading - - - - - - - - - 
   Monologue - - - - - - - - - 
 RFA ↓ Acoustic resonances are less prominent due to 

articulatory imperfections such as mumbling. 
Reading - *** - - - * - - *** 

   Monologue - ** - - - ** - - ** 
 RLR ↑ Excess inspiratory effort and/or obstruction in 

upper airways during inspiration. 
Reading - - - - - ** - - - 

   Monologue - - - - - * - - - 
  ↓ Decreased inspiratory effort. Reading - - - - - - - - - 
   Monologue - - - - - - - - - 
 PIR ↓ Decreased pausing within breath groups. 

Decreased ability to control respiratory airflow. 
Reading - - - ** *** *** *** - - 

   Monologue - - - *** *** * ** - - 
 RSR ↑ Increased rate of speech respiration. Inefficient 

respiration due to weakness of respiratory 
muscles or restricted range of movements. 
Imbalanced homeostasis may also be the cause. 

Reading - - ** - *** - ** - - 
   Monologue - - - - ** *** * - - 

 LRE ↑ Decreased ability to reverse from expiration to 
inspiration, especially difficulties in initiating 
inspiration. 

Reading - - - *** *** * * - - 
   Monologue - - - *** *** * *** ** - 

 stdPWR ↑ Excess loudness variation due to involuntary 
movements or deteriorated motor control. 

Reading - - - - - + + * - 
   Monologue - - - - - *** + + - 
  ↓ Abnormally low variation of loudness, also called 

monoloudness. 
Reading - * - - - - - - *** 

   Monologue - - - - - - - - - 
 stdF0 ↑ Excess variation of fundamental frequency due to 

involuntary movements of laryngeal muscles. 
Reading - - - - - - - - - 

   Monologue - - - - - - - - - 
  ↓ Abnormally low variation of pitch, also called 

monopitch. 
Reading *** *** *** *** *** *** - - *** 

   Monologue - ** ** * - - - - - 
 NSR ↓ Decreased syllable rate. Reading - - - * *** *** *** *** ** 

Table 7: Summary of acoustic features measured on connected speech.  
*** p<0.001, ** p<0.01, * p<0.05, - p>0.05, ++ not significant in the sample but is distinguishing when present, + not significant in the 
sample but may be present, up arrows indicate an upper-tail hypothesis (increased when severe), down arrows indicate a lower-tail 
hypothesis (decrease when severe) 
1 both tails can be expected in Parkinsonism since acceleration of speech can be achieved by both an increased speech rate and decreased 
range of movements and may not be always present (Duffy 2013). The feature was marked rather as possibly present with regard to 
possible influence of fatigue and lack of reference for the evaluation of reliability.  
2 inappropriate silences is an established feature of hypokinetic dysarthria, and prolongation of pauses was included in summary by Duffy 
(2013) and described in RBD patients by Hlavnička et al. (2017). 
3 excess loudness variations are associated with hyperkinetic dyaserthria as well as ataxic dysarthria (Duffy 2013). 
Abbreviations: RBD = rapid eye movement sleep behavior disorder, PDU = untreated Parkinson’s disease, PDT = treated Parkinson’s 
disease, MSA = multiple system atrophy, PSP = progressive supranuclear palsy, HDU = untreated Huntington’s disease, HDT = treated 
Huntington’s disease, CA = cerebellar ataxia, MS = multiple sclerosis, EST = entropy of speech timing, RST = acceleration of speech timing, 
AST = acceleration of speech timing, DPI = duration of pause intervals, DVI = duration of voiced intervals, GVI = gaping in between voiced 
intervals, DUS = duration of unvoiced stops, DUF = decay of unvoiced fricatives, RFA = resonant frequency attenuation, RLR = relative 
loudness of respiration, PIR = pause intervals per respiration, RSR = rate of speech respiration, LRE = latency in respiratory exchange, 
stdPWR = standard deviation of power, stdF0 = standard deviation of fundamental frequency, NSR = net speech rate. “Reading” 
references the reading passage task. 
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 None Unspecific Inhibitory Excitatory Mixed 

 Mean / SD Mean / SD Mean / SD Mean / SD Mean / SD 

SWFZ      
   HC 91.97 / 3.05 2.96 / 1.86 3.00 / 1.51 2.07 / 1.64 0.00 / 0.00 

   RBD 72.08 / 15.29 9.17 / 9.81 18.75 / 11.72 0.00 / 0.00 0.00 / 0.00 

   PDU 32.50 / 22.88 13.33 / 17.04 54.17 / 22.82 0.00 / 0.00 0.00 / 0.00 

   PDT 25.56 / 22.63 10.00 / 15.54 64.44 / 23.05 0.00 / 0.00 0.00 / 0.00 

   MSA 19.33 / 14.37 14.67 / 14.79 41.33 / 14.79 11.33 / 12.52 13.33 / 14.22 

   PSP 21.11 / 28.34 41.11 / 20.87 32.22 / 25.50 0.00 / 0.00 5.56 / 12.63 

   HDU 3.33 / 12.69 18.33 / 27.80 23.33 / 25.37 53.33 / 31.98 1.67 / 9.13 

   HDT 0.00 / 0.00 8.33 / 18.95 0.00 / 0.00 83.33 / 27.33 8.33 / 18.95 

   CA 4.44 / 11.52 57.78 / 28.94 15.56 / 19.04 22.22 / 18.22 0.00 / 0.00 

   MS 28.33 / 19.65 28.89 / 18.54 21.67 / 16.46 21.11 / 18.54 0.00 / 0.00 

Naïve Bayes      

   HC 90.28 / 3.71 3.57 / 2.24 4.84 / 2.55 1.31 / 1.33 0.00 / 0.00 

   RBD 72.08 / 12.58 10.00 / 7.63 17.92 / 11.22 0.00 / 0.00 0.00 / 0.00 

   PDU 42.50 / 27.97 0.83 / 4.56 56.67 / 27.02 0.00 / 0.00 0.00 / 0.00 

   PDT 33.33 / 23.16 1.11 / 6.09 65.56 / 23.95 0.00 / 0.00 0.00 / 0.00 

   MSA 22.00 / 16.90 6.67 / 9.59 44.67 / 18.71 12.00 / 13.49 14.67 / 14.79 

   PSP 22.22 / 18.22 33.33 / 21.44 33.33 / 27.68 0.00 / 0.00 11.11 / 15.98 

   HDU 0.00 / 0.00 1.67 / 9.13 25.00 / 25.43 66.67 / 27.33 6.67 / 17.29 

   HDT 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 86.67 / 22.49 13.33 / 22.49 

   CA 5.56 / 12.63 48.89 / 25.87 15.56 / 22.71 30.00 / 25.30 0.00 / 0.00 

   MS 40.00 / 16.14 12.78 / 11.32 27.78 / 16.57 17.78 / 14.47 1.67 / 5.09 

SVM     

   HC 93.57 / 3.07 1.83 / 1.39 3.33 / 2.08 1.27 / 1.50 0.00 / 0.00 

   RBD 69.17 / 15.99 10.83 / 11.24 20.00 / 13.77 0.00 / 0.00 0.00 / 0.00 

   PDU 35.83 / 22.44 9.17 / 12.25 55.00 / 23.12 0.00 / 0.00 0.00 / 0.00 

   PDT 41.11 / 22.63 5.56 / 12.63 53.33 / 25.67 0.00 / 0.00 0.00 / 0.00 

   MSA 20.67 / 12.30 19.33 / 19.29 36.00 / 20.61 14.67 / 12.79 9.33 / 10.15 

   PSP 17.78 / 20.96 36.67 / 20.25 37.78 / 27.31 0.00 / 0.00 7.78 / 14.34 

   HDU 1.67 / 9.13 33.33 / 30.32 5.00 / 15.26 60.00 / 30.51 0.00 / 0.00 

   HDT 0.00 / 0.00 5.00 / 15.26 0.00 / 0.00 71.67 / 31.30 23.33 / 25.37 

   CA 14.44 / 16.80 50.00 / 20.99 14.44 / 20.87 18.89 / 18.94 2.22 / 8.46 

   MS 36.11 / 20.57 20.56 / 14.31 22.22 / 14.73 19.44 / 17.00 1.67 / 5.09 

Neural network      

   HC 92.63 / 2.93 2.68 / 1.97 3.05 / 2.34 1.60 / 1.37 0.05 / 0.26 

   RBD 77.92 / 15.29 7.92 / 11.12 14.17 / 13.02 0.00 / 0.00 0.00 / 0.00 

   PDU 55.00 / 25.76 0.83 / 4.56 44.17 / 26.82 0.00 / 0.00 0.00 / 0.00 

   PDT 45.56 / 29.66 6.67 / 13.56 47.78 / 31.18 0.00 / 0.00 0.00 / 0.00 

   MSA 23.33 / 15.83 19.33 / 19.99 38.00 / 28.45 9.33 / 14.61 10.00 / 13.65 

   PSP 25.56 / 29.92 32.22 / 29.66 33.33 / 33.90 1.11 / 6.09 7.78 / 14.34 

   HDU 3.33 / 12.69 11.67 / 21.51 16.67 / 23.97 63.33 / 34.57 5.00 / 15.26 

   HDT 0.00 / 0.00 6.67 / 21.71 0.00 / 0.00 81.67 / 27.80 11.67 / 21.51 

   CA 22.22 / 23.71 47.78 / 22.63 8.89 / 17.36 20.00 / 22.49 1.11 / 6.09 

   MS 51.67 / 22.04 16.11 / 14.83 17.22 / 14.17 13.33 / 11.91 1.67 / 5.09 

Table 8: Incidences of speech patterns by randomized stratified cross-validation.  
All values are expressed in percent. 

Abbreviations: SD = standard deviation, SVM = support vector machine, HC = healthy control, RBD = rapid eye movement sleep behavior 
disorder, PDU = untreated Parkinson’s disease, PDT = treated Parkinson’s disease, MSA = multiple system atrophy, PSP = progressive 
supranuclear palsy, HDU = untreated Huntington’s disease, HDT = treated Huntington’s disease, CA = cerebellar ataxia, MS = multiple sclerosis, 
SVM = support vector machine, SWFZ = supervised weighted fusion of z-scores. 
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Figure 11: Incidences estimated by the leave-one-out cross-validation experiment.  
Abbreviations: HC = healthy control, RBD = rapid eye movement sleep behavior disorder, PDU = untreated Parkinson’s disease, PDT = treated 
Parkinson’s disease, MSA = multiple system atrophy, PSP = progressive supranuclear palsy, HDU = untreated Huntington’s disease, HDT = 
treated Huntington’s disease, CA = cerebellar ataxia, MS = multiple sclerosis. 

 

3.4 QUESTIONNAIRE FEEDBACK 

The experienced clinical speech pathologist rated the software implementation of the proposed 

method (see APPENDIX D: QUESTIONNAIRE FEEDBACK, page 121) with a mean score of 92% 

regarding customer satisfaction (questions 1-5), 89% regarding clinical relevance (questions 6-10), 

96% regarding interpretability of the provided results (questions 11-15), 90% regarding overall 

benefits (questions 16-20), and 88% regarding limitations of application (questions 21-25), where 

100% corresponds to usefulness and 0% to uselessness. Detailed answers can be found in 

APPENDIX D: QUESTIONNAIRE FEEDBACK, page 121. 

3.5 CASE STUDIES 

The proposed methodology is demonstrated in this section on two case studies. Both subjects 

agreed with the recording and provided informed consent. The neurological diagnosis was 

conducted by a neurologist experienced in motor disorders.  A speech-language-swallowing 

examination, including the recording of audio signals, was conducted by a speech pathologist. All 

signals were analyzed automatically using the proposed methodology and interpreted by the author 

of this thesis.  

3.5.1 Case A 

Characterization: Male born in 1932. 

NEUROLOGICAL DIAGNOSIS 

Date: November 30, 2017. 

Diagnosis: Patient suffers from tremor dominant idiopathic Parkinson’s disease. Hypokinetic 

dysarthria worsens over time. Dyskinesia in orofacial region probably induced by levodopa.  
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Subjective: Tremor at rest of right upper limb and less of right lower limb first manifested 

approximately in 2015. Patient is aware of reduced intelligibility. Medication lessens tremor, but its 

effect on speech is minimal.  

Pharmacological anamnesis: Nakom mitte, PK-Merz. 

Follow-up diagnosis (July 28, 2018): Parkinson’s disease and possible vascular encephalopathy.  

SPEECH-LANGUAGE-SWALLOWING PATHOLOGY DIAGNOSIS 

Date: January 23, 2018. 

Diagnosis: Patient is lucid, cooperative; communicates verbally, fluently, coherently with sufficient 

information value. No indices of language disorder were found (not a target of examination). 

Neurologist recommended examination in order to inspect motor function of speech and 

swallowing movements. 

Subjective: Worsening of speech was observed for last 2 months–mumbling, wheezing, unintelligible 

speech. Patient was cold 14 days ago; had inflammation of the tooth and mucosa in oral cavity–

burning sensation, allegedly monitored by dentist. No difficulties in breathing and swallowing. 

Involuntary oral movements–patient bites himself sometimes. 

Facial movements: Hypomimia, mild side facial-asymmetry, no paresis of nervus facialis, hypokinesis 

of mimic muscles. Patient shows no difficulties in keeping lips closed, protrusion and grinning are 

symmetrical, isolated lateral oral movements–left is limited. Diadochokinesis is hypokinetic, 

bradykinetic; deteriorated coordination–speech indicates oral apraxia. Lower jaw can move in 

elevation and depression. Protrusion is limited (laterally right is better but laterally left is limited). 

Coordination of complex rotation movements is worsened. Tonus of muscles of mastication is 

hard to evaluate. Resistance of jaw muscles against pressure of hand is sufficient. Scars from cheek 

biting are visible–scars are not atrophic. No pathological cover on tongue’s surface was found. 

Protrusion of tongue was normal. Elevation of tongue is limited in all parts. Soft palate is 

symmetrical at rest and elevation. Pharyngeal reflex is present. Tactile sensitivity of oral cavity is 

sufficient. Involuntary movements of orofacial musculature were not present during examination–

intermittent presence is suspected according to documented neurological examination. 

Phono-respiration: Respiration at rest is regular–nose is involved. Maximal phonation time was 14 

seconds. Hoarseness and tremolo were observed in prolonged phonation. Patient manifested 

hypophonia in connected speech. Durations of breath groups in connected speech are sufficient. 

Phono-respiration is intermittently discoordinated during speech; reserve volume is not fully 

expired, mild hypernasality, Peak cough flow was 344 l/m. 

Phonetics: High-arched palate and cross-bite occlusion (influential to alveolar fricatives) were pre-

morbid. Dysarthria manifests by weakened occlusive, decreased intelligibility–especially changing 

speech rate with tendencies to mumbling, monoloudness, and monopitch.  

Deglutition: Head posture and body posture are voluntarily controlled. Self-reliance during eating is 

sufficient. Calorie intake is adequate. Lunch takes approximately 30 minutes. Patient lost 13 kg 

within last two years unintentionally (originally 93 kg weight, 180 cm height). Patient eats all kinds 

of food with consistency–no type is avoided, no thickening agents are used, no sipping. High 

temperature, infection of airways, gastroesophageal reflux, regurgitation, heartburn, and 

odynophagia were treated. 
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Salivation: Saliva gathers in right corner of lips causing occasional drooling. Speech is affected by 

retained saliva. Swallowing reflex initiates with latency. Elevation of larynx is sufficient. No gurgle 

or reflexive cough was present in phonation after deglutition. 

Liquids: Patient is able to swallow liquids continually without thickening agent. Swallowing reflex 

is initiated with latency. Elevation of larynx is sufficient. Reflexive cough after deglutition was 

present and effective. 

Volume test: 30ml per 2 deglutition (reflexive cough); 20ml per 1 deglutition (reflexive cough). 

Normative value for a man is 30ml per 2 deglutition. 

Speed test: 100ml per 12 deglutition within 19 seconds (reflexive cough was not present). Normative 

value for a man is 100ml per 10 seconds. Considerably reduced speech of deglutition and size of 

bolus (circa 8.3ml) increased coordination of deglutition. Deglutition of solid foods was not 

examined. Patient mentioned that reflexive cough was present also after eating food with mixed 

consistency, such as soup, especially. 

Conclusion: R47.1 hypokinetic dysarthria (suspected combination with hyperkinetic dysarthria); R 

13 dysphagia.  

Recommendations: The patient was told to keep the regime and compensatory actions during eating 

and drinking–using thickening agents, especially. Weight must be monitored regularly. If 

unintended weight loss continues, the patient should be examined by a nutritionist and sipping 

should be evaluated. Motor therapy of speech and deglutition will be conducted by a speech 

pathologist. 

Videofluoroscopic examination of degustation on January 30, 2018: Patient manifests silent aspiration 

during swallowing of fluids (Rosenbek 8)–residuals remain in airways. Contrast agent gets in 

contact with vocal folds during swallowing of thickened consistence (yogurt, Rosenbek 5)–

contraindication with residuum. Contrast agent remain above vocal folds, and residuum is 

noticeable when swallowing solid food (sponge cake with barium contract agent, Rosenbek 3). 

Moderate dysphagia, according to Daniels. 

THERAPY OF SPEECH AND SWALLOWING 

Patient manifests no perceptual deficit of speech and written language. Main deficits are 

bradyphrenia, problems with memory, dysexecutive syndrome (limiting for therapy–little work can 

be done during one session). Patient trains at home regularly, but frequently erroneously or 

ineffectively. Therapy is focused primarily on deglutition and strengthening respiration. Some 

sessions were cancelled due to patient’s injuries. 

Therapy session on February 2, 2018: Speech motor training of articulators, strengthening laryngeal 

and pharyngeal muscles (to improve elevation of larynx during swallowing). 

Therapy session on March 3, 2018: Speech motor training of articulators, strengthening laryngeal and 

pharyngeal muscles, training of supraglottic swallowing. 

Therapy session on April 17, 2018: Speech motor training of articulators, strengthening laryngeal, 

pharyngeal muscles, and glottis, training respiration– air stacking for improvement of maximum 

insufflation capacity, phonation training focused on optimization of vocal register and 

strengthening of phonation, whistle register (elevation of larynx), fixation of supraglottic 

swallowing. 
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Therapy session on May 15, 2018: Speech motor training of articulators, training of phono-

respiration– air stacking, phonation training focused on optimization of vocal register, threshold 

lung muscle trainer for both inspiration and expiration (delay caused by revision physician), 

inspiration threshold was recommended for beginning in order to become more familiar with the 

tools. 

Therapy session on June 26, 2018: Patient forgot all tools at home. The training continued similarly to 

previous session. Only speech motor training was performed at home according to printed 

illustration of exercises. Patient was not able to train other exercises at home. 

ACOUSTIC ANALYSIS 

Reading passage, rhythm task, diadochokinetic task, and sustained vowels were recorded during 

the initial speech-language-swallowing examination on January 23, 2018 and during the follow-up 

therapy sessions on March 6, May 15, and June 26, 2018. All signals were recorded and processed 

using the methodology and equipment described in section 2 Method, page 17. The automatically 

generated report is illustrated in Table 9, Figure 12, Figure 13, Figure 14, and Figure 15.  

Prosody: Variation of melody was reduced significantly in the reading passage. Although variation 

of loudness was not abnormal, the patient manifested a significant inhibitory speech pattern. The 

flow of voiced, unvoiced, and pause intervals was also reduced, whereas the net speech rate 

remained normal, which indicates that the reduced range of speech movements was the relevant 

cause. In addition, the increased organization of speech regarding the occurrence of voiced, 

unvoiced, pause, and respiratory intervals suggests that the voiced speech had tendencies to 

dominate the speech flow, possibly due to impaired phonatory control, as detected by other speech 

features. Difficulties in initiating speech was another prosodic feature related to impaired phono-

respiration. Increased duration of vowels in the diadochokinetic test point out that prosody was 

possibly influenced by the slowness of articulatory movements. 

Articulation: Spirantization of unvoiced stops was observed in both tasks of connected speech. 

Additionally, the diadochokinetic task was performed at a normal rate but with irregular rhythm. 

However, no irregularity was found in the performance of the rhythm task, which suggests that 

the irregularity in diadochokinesis resulted from compensation of difficulties in articulation. 

Resonance: A significantly increased degree of hypernasality was observed in the sustained vowel 

/I/. Hypernasality was steady with no indication of involuntary movements. 

Phonation: Decreased gaping in between voiced intervals and prolongation of voiced intervals was 

found in both tasks dealing with connected speech, which, together with the significant 

prolongation of pauses in connected speech and the increased VOT in the diadochokinetic task, 

indicates deteriorated control over adduction and abduction of the vocal folds. A subharmonic 

vibrational regime manifested early in the course of phonation, lowering the likelihood that the 

phonatory deficit originates in abnormal respiration. Instabilities in the amplitude and waveform 

of the vibrations were also observed. The impaired phonatory control can be attributed to the 

hoarseness together with the possible influence of inflammation since the patient was cold two 

weeks before the examination.  

Respiration: The increased rate of speech respiration during the monologue suggests a decreased 

effectivity of respiration. Breath groups were performed with fewer pauses, suggesting bad 

economy of respiration as well as decreased function of vocal folds as a valve for opening and 

closing the airway during exhalation, which is supported by findings of abnormal GVI and DVI.  



 
Results  Case studies 

 

- 65 - 
 

 

Symbol Task Value P-value Z-score Description Interpretation 

DVI Monologue 419 0.0001 5.69 Duration of voiced 
intervals (ms) 

Voicing interferes with or continues within voiceless intervals. 
Decreased control of laryngeal muscles and coordination of 
laryngeal and supra-laryngeal muscles. 

DUS Monologue 58.4 0.0001 4.72 Duration of 
unvoiced stops (ms) 

Imperfect articulation of unvoiced stops. Unvoiced stops are 
prolonged or, for more extreme values, spirantized. 

DVI Reading 
passage 

352 0.0001 4.5 Duration of voiced 
intervals (ms) 

Voicing interferes with or continues within voiceless intervals. 
Decreased control of laryngeal muscles and coordination of 
laryngeal and supra-laryngeal muscles. 

RST Monologue 224 0.0001 -4.16 Rate of speech 
timing (intervals/s) 

Reduced stream of voiced, unvoiced,and pause intervals. Typically 
in consequence to reduced range of speech movements and/or 
decreased syllabic rate. 

EFn_M Sustained 
vowel /I/ 

-31.6 0.0001 4.04 Hypernasality mean 
(dB) 

Increased hypernasality due typically to impaired control over 
elevator muscle of the soft palate. 

EST Reading 
passage 

1.52 0.0002 -3.85 Entropy of speech 
timing (-) 

Impaired coordination between subsystems, or insufficient control 
over one or more subsystems of speech, e.g., voiced speech tends 
to dominate speech typically in severe dysarthria. 

HNR Sustained 
vowel /A/ 

10.2 0.0002 -3.61 Harmonic to noise 
ratio (dB) 

Increased noise due to turbulent airflow in vocal folds. Associated 
with hoarseness. 

LSI Sustained 
vowel /A/ 

3.87 0.0017 -2.94 Location of first 
subharmonic 
interval (s) 

Vocal folds started subharmonic vibrations early in the course of 
the phonation. Vocal folds are either more prone to subharmonics 
or neuromuscular control of vocal folds is deteriorated. 

DUS Reading 
passage 

35.9 0.0018 2.92 Duration of 
unvoiced stops (ms) 

Imperfect articulation of unvoiced stops. Unvoiced stops are 
prolonged or, for more extreme values, spirantized. 

GVI Reading 
passage 

24.4 0.0019 -2.9 Gaping in-between 
voiced intervals 
(pause/min) 

Decreased ability of vocal folds to stop voicing by adduction. 

RST Reading 
passage 

274 0.0026 -2.8 Rate of speech 
timing (intervals/s) 

Reduced stream of voiced, unvoiced, and pause intervals. Typically 
in consequence to reduced range of speech movements and/or 
decreased syllabic rate. 

GVI Monologue 18.1 0.0055 -2.54 Gaping in-between 
voiced intervals 
(pause/min) 

Decreased ability of vocal folds to stop voicing by adduction. 

VOT Diadochokinetic 
task 

37.3 0.0072 2.45 Voice Onset Time 
(ms) 

Disrupted coordination of laryngeal and supralaryngeal muscles. 
Decreased ability of laryngeal muscles to initiate voicing.  

VD Diadochokinetic 
task 

78.3 0.0088 2.38 Vowel duration (ms) Slow movements and excessive vocal emphasis manifested by 
abnormally prolonged vowels. 

DPI Monologue 273 0.0113 2.28 Duration of pause 
intervals (ms) 

Difficulties in initiating speech and/or omission of short pauses. 

RSR Monologue 25.8 0.0122 2.25 Rate of speech 
respiration 
(respirations/min) 

Increased rate of speech respiration. Inefficient respiration or 
imbalanced homeostasis.  

DDKI Diadochokinetic 
task 

65.1 0.0123 2.25 Diadochokinetic 
irregularity (ms) 

Pace of alternating motion is more irregular due to involuntary 
movements of speech apparatus or impaired timing.  

RLR Monologue -17.2 0.0144 2.45 Relative loudness of 
respiration (dB) 

Excess inspiratory effort and/or obstruction in upper airways 
during inspiration. 

Shimmer Sustained 
vowel /A/ 

5.54 0.0184 2.09 Shimmer (%) Unstable amplitudes of glottal pulses. Associated with hoarseness. 

stdF0 Reading 
passage 

1.2 0.019 -2.35 Standard deviation 
of F0 (semitones) 

Abnormally low variation of pitch, also called monopitch 

PIR Monologue 2 0.0216 -2.02 Pause intervals per 
respiration (-) 

Decreased pausing within breath groups. Decreased ability to 
control respiratory airflow.  

DPI Reading 
passage 

220 0.0238 1.98 Duration of pause 
intervals (ms) 

Difficulties in initiating speech and/or ommision of short pauses.  

RLR Reading 
passage 

-19.5 0.0705 1.81 Relative loudness of 
respiration (dB) 

N/A 

RFA Monologue 7.73 0.0877 -1.36 Resonant frequency 
attenuation (dB) 

N/A 

Table 9: Summary of most severe speech features of case A measured at the first recording session. 
Findings were sorted by ascending p-values. The table represents an illustrative capture of the automated report. Only significant results and 
two insignificant features were included for illustration. Tasks were renamed according to the notation used in the thesis. Note that the 
reported interpretation was assigned automatically following definitions derived from Table 6 and Table 7. 
Abbreviations: N/A = not available–marking insignificant results. 
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Figure 12: Illustrated results of case A measured at 
the first recording session.  
Abbreviations: AST = acceleration of speech 
timing, DDKI = diadochokinetic irregularity, DDKR 
= diadochokinetic rate, DPI = duration of pause 
intervals, DUF = decay of unvoiced fricatives, DUS 
= duration of unvoiced stops, DVA = degree of 
vocal arrests, DVI = duration of voiced intervals, 
EFn_M = degree of hypernasality, EFn_SD = 
intermittend hypernasality, EST = entropy of 
speech timing, GVI = gaping in between voiced 
intervals, HNR = harmonics-to-noise ratio, LRE = 
latency in respiratory exchange, LSI = location of 
subharmonic intervals, MPT = maximum 
phonation time, NSR = net speech rate, PIR = 
pause intervals per respiration, PSI = proportion of 
subharmonic intervals, RA = rhythm acceleration, 
RI = rhythm instability, RLR = relative loudness of 
respiration, RFA = resonant frequency 
attenuation, RSR = rate of speech respiration, RST 
= acceleration of speech timing, stdF0 = standard 
deviation of fundamental frequency, stdPSD = 
standard deviation of power spectral density, 
stdPWR = standard deviation of power, VD = vowel 
duration, VOT = voice onset time, DDK = 
diadochokinetic task, phonationA = sustained 
vowel /A/, phonationI = sustained vowel /I/, text = 
reading passage. Features were measured on 
tasks corresponding to subscripted numbers. 
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Figure 13: Illustrated results of the case A 
measured at the last recording session. 
Abbreviations: AST = acceleration of speech 
timing, DDKI = diadochokinetic irregularity, DDKR 
= diadochokinetic rate, DPI = duration of pause 
intervals, DUF = decay of unvoiced fricatives, DUS 
= duration of unvoiced stops, DVA = degree of 
vocal arrests, DVI = duration of voiced intervals, 
EFn_M = degree of hypernasality, EFn_SD = 
intermittend hypernasality, EST = entropy of 
speech timing, GVI = gaping in between voiced 
intervals, HNR = harmonics-to-noise ratio, LRE = 
latency in respiratory exchange, LSI = location of 
subharmonic intervals, MPT = maximum 
phonation time, NSR = net speech rate, PIR = 
pause intervals per respiration, PSI = proportion of 
subharmonic intervals, RA = rhythm acceleration, 
RI = rhythm instability, RLR = relative loudness of 
respiration, RFA = resonant frequency 
attenuation, RSR = rate of speech respiration, RST 
= acceleration of speech timing, stdF0 = standard 
deviation of fundamental frequency, stdPSD = 
standard deviation of power spectral density, 
stdPWR = standard deviation of power, VD = vowel 
duration, VOT = voice onset time, DDK = 
diadochokinetic task, phonationA = sustained 
vowel /A/, phonationI = sustained vowel /I/, text = 
reading passage. Features were measured on 
tasks corresponding to subscripted numbers. 
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Finally, inspirations were loud in the monologue task, probably as a result of the gathered saliva 

described in the speech-language-swallowing pathology diagnosis. 

Longitudinal follow-up: A considerable improvement in speech performance was observed in 

individual speech features as well as overall dimensions and speech patterns. Prosody did improve 

in terms of loudness and melody variation. The rate of speech timing increased after the first 

session, but the values were still below the norm. Several prosodic aspects, such as the entropy of 

speech timing, duration of voiced intervals in diadochokinetic task, and duration of pauses varied 

over time, reflecting the erratic qualities of the speaker’s performance that originate from 

interactions between the various dimensions and the speaker’s compensation for the speech 

disability. Spirantization was present over all sessions, but the increase in the regularity of the 

performance of the diadochokinetic task indicated a subtle improvement of articulation, whereas 

VOT did improve only after the first session and then remained on the border of abnormality. 

Additionally, gradual improvement of formant resonances was observed despite the fact that the 

resonances were normally prominent at the time of initial examination. The velopharyngeal 

insufficiency disappeared completely after the first session, and the degree of hypernasality 

converged towards modal values. Hoarseness disappeared completely after the first recording 

session, suggesting the possible effect of cured coldness. Other measures related to phonation also 

dropped after the first session but remained abnormal with random variation. The subharmonics 

Inhibitory speech pattern, p-value=0.002, z-score=2.91 

 

          

       
 

Unspecific speech pattern, p-value<0.001, z-score=4.46 
 

  

Figure 14: Speech patterns of the case A measured at the first recording session. 
Percent corresponds to the contribution of the feature and dimension to the overall salience enumerated by the z-score. Contribution 
was estimated according to Equation 34. 
Abbreviations: DDKI = diadochokinetic irregularioty, DDKR = diadochokinetic rate, DUS = duration of unvoiced stops, EFn_M = degree 
of hypernasality, GVI = gaping in between voiced intervals, HNR = harmonics-to-noise ratio, MPT = maximum phonation time, RFA = 
resonant frequency attenuation, RST = rate of speech timing, stdF0 = standard deviation of fundamental frequency, stdPWR = standard 
deviation of power, VOT = voice onset time, DDK = diadochokinetic task, phonationA = sustained vowel /A/, phonationI = sustained 
vowel /I/, text = reading passage. 
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arose later in consecutive sessions and were not even present in the last recording. Finally, an 

increased speech respiratory rate as well as abnormal loudness of respiration declined over time 

and reached modal values at the final recording session, whereas breath grouping during the 

monologue did improve after the first therapy session and remained insignificant for all following 

sessions.  

Conclusions: The patient manifested significant inhibitory tendencies, weak respiration, impaired 

phonatory control, and an unspecific speech pattern with prominent phonatory and articulatory 

deficits. All dimensions of speech improved by some degree during therapy, and respiration and 

resonance showed significant improvements. Nevertheless, factors beyond the speech-swallowing  

 

   

   

   

   
 

 

 
Figure 15: Longitudinal data of selected speech features measured on case A. 
Note that no subharmonics were present in the last recording session; thus, no value of LSI was 
measured. 
Time stamps correspond to the order of the recording sessions.  
Abbreviations: DDKI = diadochokinetic irregularity, DPI = duration of pause intervals, EFn_M = 
degree of hypernasality, GVI = gaping in between voiced intervals, HNR = harmonics-to-noise 
ratio, RFA = resonant frequency attenuation, RLR = relative loudness of respiration, RSR = rate of 
speech respiration, , stdF0 = standard deviation of fundamental frequency, stdPWR = standard 
deviation of power, DDK = diadochokinetic task, phonationA = sustained vowel /A/, phonationI = 
sustained vowel /I/, text = reading passage. 
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therapy, such as medication and becoming well again, could have contributed to the better 

performance, especially when considering the suddenness of the change between the first and 

second recording sessions. 

3.5.2 Case B 

Characterization: Male born in 1980. 

NEUROLOGICAL DIAGNOSIS 

Date: April 19, 2017. 

Diagnosis: Huntington’s disease, moderate stage, genetically verified in June 2017, generalized 

chorea, behavioral disorder, attention-deficit disorder, anxiety. 

Pharmacological anamnesis: Argofax, Xanax, Risperidon, Valprocit. 

SPEECH-LANGUAGE-SWALLOWING PATHOLOGY DIAGNOSIS 

Date: July 19, 2017. 

Diagnosis: Patient communicates verbally with borderline fluency. Information value is limited–

patient is not capable of describing his anamnesis (help of his mother was required). Patient is able 

to react to verbal impetus appropriately; complies with roles in dialogue and holds weak eye 

contact. Spoken and written language is preserved. Level of speech disorder corresponds to the 

communication-cognitive deficits associated with the neurological diagnosis. Examination was 

focused on motor function of speech and swallowing. Progress of the therapy was slow due to the 

deteriorated cognition and memory problems–patient requires written instructions for training at 

home. Fast complex training was ineffective. 

Subjective: The patient is aware of difficulties with intonation of melody and speech tempo–both 

vary involuntarily. Patient has problems characterizing and describing events. Patient chokes 

during drinking and eating–food falls out of patient’s mouth frequently; eating takes longer than 

previously (circa 15-20 minutes). Patient is able to eat whole portion. Gathering of saliva with 

occasional drooling do not wake him up at night–patient negates saliva leaks. Occasional pyrosis. 

Coordination of movements is worsened. Patient feels stressed frequently, or on the contrary, 

lethargic or depressive. Weight loss is not apparent (height 182 cm, weight 75 kg). Patient negates 

nasal penetration, odynophagia, tightness in the throat during swallowing, and regurgitation. 

Facial movements: Face is symmetrical. No grimaces were present at the time of examination. The 

patient is involuntarily chattering teeth. Keeping lips closed is not difficult for the patient. 

Protrusion and grinning is symmetrical. Patient suffers from dysdiadochokinesia, difficulties in 

lateral movements–lingual apraxia. Mandibular movements are preserved in elevation and 

depression, protrusion and lateral movements only partially. Rotation movements are strongly 

affected. Tonus of muscles of mastication is sufficient. The patient manifests buccal apraxia. 

Tongue is white and shows no atrophy, no scars from cheek biting, and normal protrusion. Patient 

cannot straighten the protruding tongue. The patient compensates the involuntary retraction of 

the tongue by rotating the tongue down to chin. Isolated elevation of the tip, upper side, and root 

of the tongue is unaffected. Lateral movements and coordination of repetitive movements are 

deteriorated. Tonus of the tongue is appropriate. No involuntary movements were observed in 
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relaxed tongue. Soft palate is symmetrical in rest and in elevation. Palatal and pharyngeal reflex 

were present.  

Phono-respiration: Respiration at rest is regular. No dysrhythmia was observed. Maximal phonation 

time is shortened to 3-4 seconds. Excess pitch variation (not a tremolo) was present. Phonation is 

not affected by hoarseness. Breath groups were shortened in connected speech. The patient 

manifests no abnormal nasality. 

Phonetics: Articulation is slurred–deteriorated coordination of articulation in connected speech; 

intact only isolated (except thrill consonants). Tempo is variable. No dysfluencies are present. The 

patient manifests abnormal pitch variation in connected speech. 

Deglutition: Head posture and body posture are voluntarily controlled. Self-reliance during eating is 

lowered. Fine motor control is deteriorated–cutting food is problematic. Consequently, patient 

prefer big mouthful. Calorie intake is adequate. No thickening agents or sipping are required. 

Salivation: No gathering of saliva was observed during examination. Mucosa is sufficiently wet 

without stickiness (subject mentioned occasional gathering of saliva). Voluntary deglutition of 

saliva is problematic–swallowing apraxia.  

Liquids: Patient drinks in single shots. Head goes from hyperextension to extension after gathering 

bolus. Swallowing reflex is initiated with latency. Elevation of larynx is sufficient. No perceptible 

changes in phonation or reflexive cough were present after deglutition. Deteriorated coordination 

of swallowing reflex is assumed. Leaking is suspected. No tachyphagia or aerophagia were 

observed. 

Volume test: 30 ml / 15 s–corresponds to normative data for males. 

Speed test: 100 ml / 15 s–slower than normative values of 100 ml / 10 s in consequence to drinking 

continually, which was too risky for the patient (100 ml in three shots using 6 deglutition). 

Deglutition of solid foods was not examined. 

Conclusion: R47.1 hyperkinetic dysarthria, R48.2 oral apraxia and swallowing apraxia, R13 mild 

dysphagia in all phases of deglutition.  

Recommendations: The patient should undergo speech motor training of articulators and phono-

respiration, strengthening laryngeal and pharyngeal muscles, guidance about optimal eating regime, 

and training cognitive functions.  

Videofluoroscopic examination of degustation (November 28, 2017): Swallowing was intermittently 

discoordinated during drinking normal bolus of fluids (Rosenbek 7). Patient then aspirates below 

the level of glottal folds. Contrast agent remains in airways despite reflexive cough. Deglutition of 

thickened and solid foods (Rosenbek 10) was normal. 

THERAPY OF SPEECH AND SWALLOWING 

The therapy will focus on the preservation of swallowing functions. It is important to identify the 

breakpoint when percutaneous endoscopic gastrostomy is required and to gently prepare and 

inform the patient about the situation. Caloric intake must be checked regularly to avoid 

malnutrition. Motor control and coordination of respiration during deglutition (and intensity of 

reflexive cough) is the primal goal. Articulation and prosody are unachievable targets with regard 

to limited time of sessions (approximately 30 minutes) and patient’s cognitive deficits (aboulia). 
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Therapy session on September 31, 2017: The patient was hospitalized at psychiatry up to date of the 

session. The patient did learn all exercises according to the photographic guide focused on training 

lip closure that was provided on July 17, 2017. A new exercise for the mastication muscles was 

added to the training. 

Therapy session on November 28, 2017: Speech motor training of lips, jaw, and tongue was conducted. 

Results of Videofluoroscopic examination were explained to the patient. The patient was informed 

about the regime and compensatory actions for safe swallowing. The nutrition specialist revised 

the dietary regime of the patient in order to prevent weight loss.  

Therapy session on January 9, 2018: Speech motor training conducted in previous session was 

extended by training of soft palate. Phono-respiration was exercised. Air stacking was also 

performed, but it proved to be too demanding on coordination and the nasal emission of air. 

Patient started visiting Ergoactive–communication group and ergotherapy (fine motor control–

handcraft). Visiting Ergoactive was recommended because the group meetings are more frequent 

than the therapy sessions covered by health insurance.  

Therapy session on February 13, 2018: Speech motor training was conducted. Phono-respiration was 

exercised. Air stacking was performed–difficulties in coordination. Patient is capable of 

performing only simplified exercises without nasal emissions–improved resonance. 

Therapy session on March 6, 2018: Speech motor training was conducted. Phono-respiration was 

exercised, particularly the coordination between phonation and respiration. Phonation was trained. 

The patient trained humming–optimization of vocal register and continuity of phonation. 

Therapy session on April 3, 2018: Exercising was similar to previous session.  Mendelsons maneuver 

was trained unsuccessfully (poor coordination and problems with cognition)–this exercise is 

definitely unsuitable. Voluntary coordination of respiration and deglutition was trained 

successfully. 

Therapy session on May 30, 2018: Speech motor training was conducted. Phono-respiration was 

exercised, particularly the coordination between phonation and respiration. Vocal register and 

continuity of phonation was trained. Swallowing control was exercised–spirometer shows no 

abnormality. Disease progression is noticeable compared to conditions 2 months ago in 

discoordination of respiration and increased chorea (tongue, especially). 

ACOUSTIC ANALYSIS  

Recordings were gathered on July 26, 2017 (for educational purposes) and during therapy sessions 

on March 6 and May 30, 2018. The acoustic signals from reading a passage, and the rhythm, 

diadochokinetic, and sustained vowels tasks were recorded and processed by the techniques 

described in 2 METHOD, page 17. The results and visualizations generated by the fully automated 

approach are summarized in Table 10, Figure 16, Figure 17, Figure 18, and Figure 19. 

Prosody: The net speech rate was significantly reduced. The flow of connected speech was 

frequently interrupted by long pauses, which can be associated not only with difficulties in initiating 

speech and  the omission of short pauses but also with the cognitive deficits mentioned in the 

speech-language-swallowing pathology diagnosis.2 The flow of voiced, unvoiced, and pause  

                                                 
2 The automated report does not include cognitive deficits on the list of possible causes by default because this touchy 
issue can be implied only with a caution regarding the true cognitive abilities observed by an examiner. 
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Symbol Task Value P-value Z-score Description Interpretation 

stdPWR Diadochokinetic 
task 

17.8 0 29.8 Standard deviation of speech 
loudness (dB) 

Excess loudness variation due to involuntary movements 
of respiratory muscles or discoordinated phono-
respiration. 

LRE Monologue 661 0 10.8 Latency of respiratory 
exchange (ms) 

Prolonged pause between expiration and inspiration. 
Decreased ability to reverse from expiration to inspiration, 
especially difficulties in initiating inspiration. 

DPI Reading 
passage 

397 0 20.6 Duration of pause intervals 
(ms) 

Difficulties in initiating speech and/or omission of short 
pauses.  

NSR Reading 
passage 

0.505 0.0001 -8.2 Net syllable rate (syllable/s) Decreased syllable rate. 

DVI Reading 
passage 

430 0.0001 7.95 Duration of voiced intervals 
(ms) 

Voicing interferes or continues within voiceless intervals. 
Decreased control of laryngeal muscles and coordination 
of laryngeal and supra-laryngeal muscles. 

LRE Reading 
passage 

337 0.0001 7.59 Latency of respiratory 
exchange (ms) 

Decreased ability to reverse from expiration to inspiration, 
especially difficulties in initiating inspiration. 

DDKI Diadochokinetic 
task 

258 0.0001 5.62 Diadochokinetic irregularity 
(ms) 

Pace of alternating motion is more irregular due to 
involuntary movements of speech apparatus or impaired 
timing.  

DUS Reading 
passage 

49.4 0.0001 5.56 Duration of unvoiced stops 
(ms) 

Imperfect articulation of unvoiced stops. Unvoiced stops 
are prolonged or, for more extreme values, spirantized. 

RI Rhythm 28.1 0.0001 5.34 Rhythm instability (%) Irregular pace due to decreased control over speech 
apparatus or presence of involuntary movements. 

RST Reading 
passage 

186 0.0001 -4.95 Rate of speech timing 
(intervals/s) 

Reduced stream of voiced, unvoiced, and pause intervals. 
Typically in consequence to reduced range of speech 
movements and/or decreased syllabic rate. 

DVA Sustained 
vowel /A/ 

4.31 0.0001 4.48 Degree of vocal arrest (%) Voicing stops suddenly due to impaired control over 
laryngeal muscles. 

DPI Monologue 329 0.0001 3.89 Duration of pause intervals 
(ms) 

Difficulties in initiating speech and/or omission of short 
pauses. 

stdPWR Reading 
passage 

6.69 0.0005 3.53 Standard deviation of speech 
loudness (dB) 

Excess loudness variation. 

EFn_M Sustained 
vowel /I/ 

-31.6 0.0006 3.27 Hypernasality mean (dB) Increased hypernasality due typically to impaired control 
over elevator muscle of the soft palate. 

stdPSD Sustained 
vowel /A/ 

2.97 0.0039 2.66 Standard deviation of power 
spectral density (dB) 

Involuntary movements of articulators, preeminently the 
tongue. 

RST Monologue 254 0.0061 -2.51 Rate of speech timing 
(intervals/s) 

Reduced stream of voiced, unvoiced, and pause intervals. 
Typically in consequence to reduced range of speech 
movements and/or decreased syllabic rate. 

stdF0 Sustained 
vowel /A/ 

0.529 0.0065 2.48 Standard deviation of F0 
(semitones) 

Excess variation of fundamental frequency due to 
involuntary movements of laryngeal muscles. Perceptual 
feature is called excess pitch variation. 

VD Diadochokinetic 
task 

60.5 0.007 2.46 Vowel duration (ms) Slow movements and excessive vocal emphasis 
manifested by abnormally prolonged vowels. 

RLR Monologue -32.2 0.0073 -2.68 Relative loudness of 
respiration (dB) 

Decreased inspiratory effort. 

GVI Reading 
passage 

22.3 0.0091 -2.36 Gaping in-between voiced 
intervals (pause/min) 

Decreased ability of vocal folds to stop voicing by 
adduction. 

PIR Reading 
passage 

2.5 0.0185 -2.09 Pause intervals per 
respiration (-) 

Decreased pausing within breath groups. Decreased ability 
to control respiratory airflow. 

MPT Sustained 
vowel /A/ 

7.21 0.0227 -2 Maximum phonation time (s) Weakened control over respiratory and/or laryngeal 
musculature. 

VOT Diadochokinetic 
task 

23.6 0.0472 1.67 Voice Onset Time (ms) Disrupted coordination of laryngeal and supralaryngeal 
muscles. Decreased ability of laryngeal muscles to initiate 
voicing.  

RFA Reading 
passage 

8.69 0.0531 -1.62 Resonant frequency 
attenuation (dB) 

N/A 

DDKR Diadochokinetic 
task 

5.83 0.0585 -1.57 Diadochokinetic rate 
(syllables/s) 

N/A 

Table 10:  Summary of the most severe speech features of case B measured in the first recording session. 
Findings were sorted by ascending p-value. The table represents  the illustrative capture of the automated report. Only significant results 
and two insignificant features were included to illustrate the design of the automated summary. Tasks were renamed according to the 
notation used in the thesis. The reported interpretation was assigned automatically following the simplified definitions derived in Table 6 and 
Table 7. 
Abbreviations: N/A = not available–marking insignificant results. 
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Figure 16: Illustrated results of case B as measured 
in the first recording session.  
Abbreviations: AST = acceleration of speech 
timing, DDKI = diadochokinetic irregularity, DDKR 
= diadochokinetic rate, DPI = duration of pause 
intervals, DUF = decay of unvoiced fricatives, DUS 
= duration of unvoiced stops, DVA = degree of 
vocal arrests, DVI = duration of voiced intervals, 
EFn_M = degree of hypernasality, EFn_SD = 
intermittend hypernasality, EST = entropy of 
speech timing, GVI = gaping in between voiced 
intervals, HNR = harmonics-to-noise ratio, LRE = 
latency in respiratory exchange, LSI = location of 
subharmonic intervals, MPT = maximum 
phonation time, NSR = net speech rate, PIR = 
pause intervals per respiration, PSI = proportion of 
subharmonic intervals, RA = rhythm acceleration, 
RI = rhythm instability, RLR = relative loudness of 
respiration, RFA = resonant frequency 
attenuation, RSR = rate of speech respiration, RST 
= acceleration of speech timing, stdF0 = standard 
deviation of fundamental frequency, stdPSD = 
standard deviation of power spectral density, 
stdPWR = standard deviation of power, VD = vowel 
duration, VOT = voice onset time, DDK = 
diadochokinetic task, phonationA = sustained 
vowel /A/, phonationI = sustained vowel /I/, text = 
reading passage. Features were measured on 
tasks corresponding to the subscripted numbers. 
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Figure 17: Illustrated results of case B measured in 
the last recording session. 
Abbreviations: AST = acceleration of speech 
timing, DDKI = diadochokinetic irregularity, DDKR 
= diadochokinetic rate, DPI = duration of pause 
intervals, DUF = decay of unvoiced fricatives, DUS 
= duration of unvoiced stops, DVA = degree of 
vocal arrests, DVI = duration of voiced intervals, 
EFn_M = degree of hypernasality, EFn_SD = 
intermittend hypernasality, EST = entropy of 
speech timing, GVI = gaping in between voiced 
intervals, HNR = harmonics-to-noise ratio, LRE = 
latency in respiratory exchange, LSI = location of 
subharmonic intervals, MPT = maximum 
phonation time, NSR = net speech rate, PIR = 
pause intervals per respiration, PSI = proportion of 
subharmonic intervals, RA = rhythm acceleration, 
RI = rhythm instability, RLR = relative loudness of 
respiration, RFA = resonant frequency 
attenuation, RSR = rate of speech respiration, RST 
= acceleration of speech timing, stdF0 = standard 
deviation of fundamental frequency, stdPSD = 
standard deviation of power spectral density, 
stdPWR = standard deviation of power, VD = vowel 
duration, VOT = voice onset time, DDK = 
diadochokinetic task, phonationA = sustained 
vowel /A/, phonationI = sustained vowel /I/, text = 
reading passage. Features were measured on 
tasks correspondingl to subscripted numbers. 
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Excitatory speech pattern, p-value<0.001, z-score=5.59 

 

 

          

 
Unspecific speech pattern, p-value=0.005, z-score=2.58 

 

 

 

 

Figure 18: Speech patterns for case B measured in the first recording session. 
Percent corresponds to the contribution of the feature or dimension to the overall salience enumerated by the z-score.  Contribution was 
estimated according to Equation 34. 
Abbreviations: DDKI = diadochokinetic irregularity, DDKR diadochokinetic rate, DPI = duration of pause intervals, DVA = degree of vocal 
arrests,  EFn_M = degree of hypernasality, GVI = gaping in between voiced intervals,  HNR = harmonics-to-noise ratio,  MPT = maximum 
phonation time,  RFA = resonant frequency attenuation,  RST = acceleration of speech timing,  stdF0 = standard deviation of fundamental 
frequency, stdPSD = standard deviation of power spectral density, stdPWR = standard deviation of power, DDK = diadochokinetic task, 
phonationA = sustained vowel /A/, phonationI = sustained vowel /I/, text = reading passage. RST = acceleration of speech timing,  

 
intervals was significantly reduced, which reflects the overall slowness of the speech rate rather 
than the limited range of movements since the z-score of the NSR was almost doubled 
compared to the RST. The loudness variation was significantly increased during the reading 
passage as well as in diadochokinetic task, indicating involuntary movements of the respiratory 
muscles. Involuntary movements that were also present in other speech dimensions are the most 
probable cause of the increased irregularity of the rhythm task and  the prolongation of vowels 
in the diadochokinetic task.  

Articulation: Spirantization of unvoiced stops was observed while reading the passage, which 
suggests deteriorated control over the fine movements of articulators. Resonances were less 
prominent, almost reaching the level of significance. Similarly, the diadochokinetic rate was 
rather slow but insignificantly so. The articulatory disability manifested strongly in the 
irregularity of the diadochokinetic task. The repetitive articulatory rate was most likely 
modulated by the involuntary movements of articulators that were clearly present in the steady 
articulation of the sustained vowel /A/.  

Resonance: The degree of hypernasality was significantly increased in the sustained vowel /I/. 
Velopharyngeal insufficiency was not intermittent at the time of the initial recording session.  

Phonation: In addition to deteriorated control over adduction of the vocal folds manifested in the 
prolongation of voiced intervals and reduced pausing of voiced intervals in the reading passage 
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and increased VOT in the diadochokinetic task, phonation was heavily impaired by the 
involuntary movements of the laryngeal muscles, causing vocal arrests and excess melody 
variation in the steady phonation of the vowel /A/.  

Respiration: The maximum phonation time, together with decreased pausing in breath groups, 
indicates low inspiratory capacity and impaired control over phono-respiration. Significant 
prolongation of  the interval between expiration and respiration in both tasks of connected 
speech (z-scores>7) suggests discoordination of the respiratory muscles as well as difficulties in 
initiating phonation in terms of the decreased inspiratory effort during the reading passage. 
 
Longitudinal follow-up: Improvement of the net speech rate was observed in the course of therapy. 
Accordingly, flow of voiced, unvoiced, and pause intervals increased in reading the passage. A 
better performance in the last session compared to the first one was observed also in the  
 
 

   

   

   

   
 

 

 
Figure 19: Longitudinal data of selected speech features measured on case B. 
Note that no subharmonics were present in the last recording session; thus, no value of LSI was measured. 
Time stamps correspond to the order of the recording sessions.  
Abbreviations: DVA = degree of vocal arrests, DVI = duration of voiced intervals, EFn_SD = intermittend 
hypernasality, HNR = harmonics-to-noise ratio, LRE = latency in respiratory exchange, PIR = pause intervals per 
respiration, RST = acceleration of speech timing, stdPSD = standard deviation of power spectral density, stdPWR 
= standard deviation of power, DDK= diadochokinetic task, phonationA = sustained vowel /A/, phonationI = 
sustained vowel /I/, text = reading passage. 
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monologue, but the trend showed great deviation in the second session. Interestingly, the 
variation in loudness decreased over the course of therapy and dropped below the level of 
significance in the last session. The rhythm task also became more regular. Although the therapy 
was not focused on prosody itself, the motor speech exercises and training of phono-respiration 
affected the speech rhythm as well as the loudness variation positively. The only aspect of 
prosodic that worsened considerably over time was the duration of the pause, possibly reflecting 
the progression of the disease. Other prosodic features showed either no change or fluctuating 
quality. Involuntary movements and impaired control over articulators affected articulation over 
all sessions with varying degrees. Intermittent hypernasality was observed with increasing 
intensity over time, which raises the question of whether the increased degree of hypernasality 
observed in the first and last sessions–contradicting perceptual findings–was a consequence of 
the waxing and waning character of dystonia. The patient established better control over 
phonation after the first recording session, completely eliminating vocal arrests and stabilizing 
the pitch in the sustained vowel /A/. The VOT dropped suddenly to values in the normal range 
after the first recording session. Pausing between voiced intervals and shortening voiced 
intervals in the reading passage suggests the improvement of phonation as well, but the 
performance was not consistent with the findings from connected speech. Hoarseness did  
increase gradually in a clear trend and exceeded the level of significance in the last recording 
session. An advance in respiration control, possibly resulting from therapy, did manifest notably 
in the decreased latency between expiration and inspiration trending in both tasks of connected 
speech. A less unambiguous trend was observed in the increased inspiratory effort in the 
monologue. The rate of respiration and pausing in breath groups worsened only in the 
monologue, whereas breath groups in the reading passage improved mildly in the last session, 
which could be attributed to a random variation in performance. The maximum phonation time 
did fluctuate around the level of significance.  
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4 

DISCUSSION 
 

And while it would be absurd to suggest that Huntington’s disease made 

Woody Guthrie a brilliant songwriter, Dr. Whittier (and, later, Marjorie 

Guthrie herself ) would wonder aloud if the disease hadn’t worked like a drug 

on Woody, as a creative spur (in much the same that some artists use alcohol 

and other drugs), enhancing his natural rhyminess, forcing the brain to 

continually rewire itself as cells died, forcing new, wonderful, and unexpected 

synaptic pathways to open (which also led to some unexpected and not so 

wonderful behavior), forcing the brain to become—in effect—more creative to 

survive; and then, after a point, exhausted and starving for energy, the synapses 

and ganglia short-circuiting ... preventing him from concentrating on anything, 

making him fidgety, antsy, causing him to lose perspective and, eventually, his 

creative sense of himself. 

–Joe Klein, Woody Guthrie: A Life, 1980 

 

omplex automated acoustic assessment of dysarthria comparable in comprehensiveness to 

this thesis has not been presented before. Currently, the impact of neurodegeneration on 

speech motor control is known only by perceptual measures, which are commonly 

considered to be subjective. The link between objectivity of speech assessment and acoustic 

measures–recognized despite the limited interchangeability of different recording systems and 

processing methods–is de facto a chimaera, since speech performance itself manifests a high 

degree of randomness. Of course, any acoustic feature can be measured objectively on one 

particular signal when recorded and analysed by a clearly defined process–and its objectivity can 

be indisputable–, but the performance of the speaker may vary by age, sexual dimorphism, social 

background, and other unpredictable factors, such as momentary emotions. In this situation, what 

matters the most for interpretation is not the exact value of the feature but the enumerated 

uncertainty of abnormality. This chapter discusses the methodology founded upon this idea from 

the perspective of an individual acoustic analysis, findings, and speech patterns; concretizes 

scenarios in which the methodology could be applicable, and suggests directions for further 

development. 

C 



 
Discussion  Acoustic analysis 

 

- 80 - 
 

4.1 ACOUSTIC ANALYSIS 

4.1.1 Connected speech 

SEGMENTATION 

The method used for the segmentation of connected speech into the categories of voiced, 

unvoiced, pause, and respiratory intervals was based on unsupervised learning. The rationale 

behind the design was to adapt the decision to a variable level of non-speech noise and to make 

segmentation more versatile for the processing of recordings with environmental noise. Note that 

only clean recordings were selected for the database, but increased noise can be expected in any 

real recording situation. The proposed methodology showed superior performance in the 

detection of pause intervals in comparison with other available methods and sufficient 

performance in detection of respiratory intervals. Pauses shorter than 100 milliseconds were 

deemed erroneous due to the increased levels of turbulent noise that preserved the spectral 

characteristics of the previous phoneme. Classification accuracy was decreased considerably in the 

APS and HD groups (c.f. Hlavnička et al. 2017) due to an increased level of non-speech noise 

produced by the speakers. The most problematic source of errors in pauses longer than 100 

milliseconds was loud respirations, which may have shown energy levels and a spectral envelope 

comparable to unvoiced fricatives. The classification of respirations as unvoiced fricatives and vice 

versa were the most prominent types of errors in the detection of respirations and pauses longer 

than 100 milliseconds. Unpublished experiments with a filtered signal showed that the 

methodology could adapt to various spectral characteristics to a certain degree. Recognition seems 

to be sensitive to high-frequency bands, which can be exploited for improving detection accuracy. 

An analysis of errors suggests that unsupervised learning can be a very effective solution 

for segmentation of connected speech affected by dysarthria. Supervised learning would require a 

much larger database with speakers along the severity spectrum of a speech disorder because non-

speech noises are more frequent in more severe speech disorder. In addition, the manual labeling 

of all types of intervals in a large database can be too time consuming for supervised training. 

Finally, the adaptive method presented in this thesis can be applied to data gathered by various 

recording systems without any additional adjustments, unlike in supervised learning, which would 

require device-independent descriptors or a database recorded across various recording systems. 

Both adaptation of unsupervised learning as well as a clear definition of categories by supervised 

learning is desirable; thus, a hypothetical combination could be the ultimate solution. 

SPEECH FEATURES 

The battery of speech features related to prosody, articulation, phonation, and respiration 

demonstrated the importance of the task for the examination of dysarthria. Monoloudness, 

monopitch, the decreased rate of gaping in voiced speech, articulatory imperfections, prolonged 

pauses, and a reduced stream of voiced, unvoiced, and pause intervals were identified as general 

acoustic manifestations of hypokinetic dysarthria in connected speech. The acceleration of speech 

was not significant in the PD sample, which, however, does not negate the possibility of individual 

incidences, since the symptom may not be present in all patients (Duffy 2013). Gradual weakening 

of friction in unvoiced fricatives is rather an individual characteristic that may not be expected for 

a significant portion of PD patients and, as in the case of the acoustic measure of speech 

acceleration, its relation to PD is only hypothetical.  
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Unsurprisingly, the majority of features showed general trends towards inhibition across 

the various groups. Connected speech is a challenging task that requires the extensive involvement 

of all subsystems of speech. Thus, inhibition as a common manifestation of dysarthria is not only 

a natural response but also a frequent compensatory mechanism in a speech disability. Based on 

the results of the cross-sectional design of the thesis, inhibitory speech manifestations may develop 

early in the course of PD, which makes them a valuable indicator of speech motor status. It seems 

that the early presence of inhibition unrelated to compensation for a speech disability makes these 

speech features uniquely parkinsonian, which, in the context of other symptoms, such as idiopathic 

REM sleep behaviour disorder, olfaction, and face akinesia, could support early recognition of 

high-risk individuals (Postuma et al. 2009, Postuma et al. 2012).  

Excitatory tendencies, such as excess loudness variations in HD and SCA and increased 

loudness of respiration in HD, suggest that connected speech is probably the only task that is 

capable of exposing both inhibitory and excitatory trends within a single aspect of speech, e.g., 

significantly increased stdPWR in HD and SCA versus significantly decreased stdPWR in PD.  

It is of significance to note that trends were not comparably distributed between tasks. For 

illustration, the majority of groups manifested monopitch in reading the passage, but only subjects 

with Parkinsonism demonstrated monopitch in the monologue. The reading passage is 

advantageous, as the standardized content reduces the variance of measured values and thus 

increases the sensitivity of the feature. Contrarily, the monologue provides more freedom in speech 

expression as well as breath economy. Finally, reading the passage and performing the monologue 

are noninterchangeable tasks with immeasurable importance for the analysis of all groups, with 

special consideration given to PD. 

4.1.2 Rhythm 

SEGMENTATION 

The proposed segmentation of the rhythm task represents another example of an algorithm that 

achieved very high accuracy via unsupervised learning. Unsupervised learning executed inside a 

sliding recognition window, together with an additional analysis of the extremities, seems to be 

advantageous for overcoming the unpredictable manifestations of dysarthric speech for more than 

just the rhythm task. An additional analysis of the relations between segmentation accuracy and 

values of speech features is outside the scope of this thesis, but, generally, one can imagine that 

the results for speech features may be substantially skewed when different parts of the signal are 

measured or, even more likely, if the key data are positions of segments, as in the rhythm task. 

Although the proposed segmentation proved to be reliable, we can never expect an error-free 

performance for all signals in any task. Therefore, all features of all tasks in the thesis were designed 

to prevent the possible influence of misdetections. In the rhythm task, a regression analysis  

increased the robustness against failures of segmentation; in other tasks, the preference for 

nonparametric descriptors, such as the median and median absolute deviation, increased the 

robustness. It is noteworthy that these refinements may also decrease the sensitivity to short-term 

extremities in a speaker’s performance, thus, they were not applied invariably to all features. 

However, the current rhythm metrics from Skodda et al. (2010) were overly influenced by the 

quality of small sequences of syllables, although irregularities and accelerations developed through 

the course of whole phonations. In other words, the proposed approach prevents the occasional 

influence of other subsystems of speech, such as respiration or articulation, on the overall rhythm 
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metrics. Here, an insightful reader may notice that even these small refinements in the computation 

of speech features are oriented towards the decomposition of the speech processes, which was 

introduced as the leading principle of this thesis. 

SPEECH FEATURES 

The acceleration of speech showed no significant trend in PD, which contradicts a previous study  

by Rusz et al. (2015A). The database in the thesis represents an extended sample of speakers 

analyzed by Rusz et al. (2015A), excluding the Manganese-induced Parkinsonism caused by abuse 

of methcathinone (Ephedrone). The discrepancy can be accounted for by a different sample rather 

than the normalization procedure, as the normalized values examined for the subsample 

corresponding to the original study (Rusz et al. 2015A) showed a significant effect for the PD 

group. Duffy (2013) highlighted the acceleration of speech as a distinguishing feature of 

hypokinetic dysarthria, albeit it may not be constantly present. Indeed, the analysis of the 

subsample indicated variability in the presence of acceleration, which, based on an established 

interpretation (Duffy 2013), does not prevent the consideration of the acceleration of speech 

measured on an acoustic signal as a feature of hypokinetic dysarthria. 

The widespread incidence of irregularities in the performance of the rhythm task indicates 

the unspecific character of the feature. Interestingly, irregularity was salient in diseases associated 

with discoordination or involuntary movements. Additionally, its significant presence in the PDT 

group can be accounted for by decreased speech motors control. The automated method can track 

the irregularity with great accuracy, but the feature has limited potential in terms of explaining what 

exactly the cause is; thus, the underlying pathophysiology must be deduced based on other, more 

specific, findings or patterns.  

4.1.3 Sustained vowels 

SEGMENTATION 

The segmentation of sustained vowels traditionally employs supervised learning due to the strong 

relation between signal quality and the likelihood of the voice being present. However, the main 

reason for the preference for the supervised approach is that the decision can be defined by the 

technical limitations of the quantitative analysis, typically the pitch detection. Indeed, the 

normalized coefficient of the autocorrelation function is tested by a threshold of 0.45 in PRAAT 

(Boersma 1993), which limits the minimal measurable harmonics-to-noise ratio to approximately 

-0.9 dB. The threshold of the normalized coefficient of the autocorrelation function in the MDVP 

is set to the clinically more relevant level of 0.29 (Deliyski 1993), i.e., approximately a -3.9 dB 

harmonics-to-noise ratio. Boersma and Weenink, in the online documentation of PRAAT (2018), 

advocate the comparability of these thresholds since MDVP does not perform an accurate 

interpolation and correction of the window, according to Boersma (1993). One may argue that 

these thresholds are far beyond the observable harmonics-to-noise ratio; thus, they may not 

influence the results negatively in any considerable way. However, short-term extremities are, in 

fact, quite common in HNR, despite high average values for a speaker, because any instability in 

the period, such as an extreme jitter or alternating periods, can cancel the periodic order, and a 

very low HNR can be then be measured locally, even in conditions of very low additive noise. The 

analysis of different thresholds in PRAAT demonstrated that decision levels are indeed too 

optimistic and adjustment could significantly improve the accuracy. Unfortunately, a diminished 

threshold can never solve the above limitation of the autocorrelation function, but additional 
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parameters could. Therefore, two more parameters were used in addition to the crudely estimated 

HNR. The proposed segmentation employed a simple decision logic based on physiological 

assumptions to achieve superior performance in the detection of voiced intervals. The 

segmentation was designed specifically for sustained vowels, but can be applicable to any other 

task with the assumption that the recording will contain at least one interval of vocalization longer 

than the duration of the parametric window (75 milliseconds). The segmentation of sustained 

vowels, as well as several other technologies presented in this thesis, assumes low environmental 

noise. A complex acoustic analysis requires a quiet room much as a chemical analysis requires a 

clean test tube; this analogy will be valid for as long as acoustic features are measured directly 

without additional correction logic including quality selection or complicated noise reduction. 

Although some analyses are principally robust to environmental noise, such as adaptive 

segmentation or pitch detection, a complex assessment including perturbation measurements 

should not be performed on noisy or de-noised signals. This general limitation was deduced not 

only from the nature of the processing methods but also from unpublished experiments with 

noise-added and de-noised signals. 

SPEECH FEATURES 

The steady task of sustained phonation provided a unique opportunity to measure involuntary 

movements of articulators as well as laryngeal muscles sensitively. Vocal arrests, as the coarsest 

indicators of involuntary movements, were observed in the MSA and HD groups. Excitatory 

trends were also present in the articulation of the vowel /A/ for MSA, HD, and CA. Finally, the 

fine movements of the laryngeal muscles showed higher variances in APS, HD, CA, and MS. Note 

that this analysis was based on a newly introduced approach that distinguishes vibrations 

modulated by laryngeal muscles and the effect of subharmonic vibrations. Therefore, the variation 

of F0 does not cover pitch jumps caused by subharmonics.  

Strong excitatory trends in sustained vowels for CA and MS can be explained by ataxia 

that could increase the variability of steady movements due to inaccurate targeting. An inability to 

target pitch to a visual contour was found to be related to ataxia in experiments by McClean et al. 

(1987). Nevertheless, a generalization of this hypothesis to the unsteadiness of phonation and 

articulation in CA and MS would require additional experiments. 

Increased perturbation is a common denominator of phonatory dysfunction, which, 

according to our results, can be expected in all types of dysarthrias analyzed in the thesis. Still, only 

HNR was found to be significant in PD and can be related to the low efficiency of the glottal 

movements that convert the respiratory flow into vibrations rather than the simple cycle-to-cycle 

stability, as described by jitter and shimmer. The instability in the vibrational regime in APS and 

HD, as manifested by the early incidence of subharmonics, was more dominant in HD. An 

increased proportion of subharmonics can trick the mind into perceiving a pitch break, which is 

an established symptom of hyperkinetic dysarthria (Duffy 2013). The neurogenic origin of 

subharmonics in HD can be associated with excitatory movements. Other factors, such as the 

disintegration of speech motor control and respiratory insufficiency determined by shortened 

phonation time, can contribute to the overall instability of phonation in PD, APS, and HD. 

Hypernasality was present in APS and HD, in accordance with a previous study (Novotný 

et al. 2016). Nevertheless, the normative values of the matched healthy controls were significantly 

higher (t-test, p<0.001) for both males and females compared to the data published in the original 

study (Novotný et al. 2016). Furthermore, intermittent hypernasality was not significantly present 
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in any group. This discrepancy is caused by a different segmentation methodology.  The 

segmentation in the original study (Novotný et al. 2016) was based on PRAAT in default settings, 

whereas this thesis determines voiced speech by an algorithm with different criteria.  

This case demonstrates why the standardization of acoustic analysis is necessary for the 

introduction of acoustic analysis into clinical practice. Any adjustment in the algorithm may bias 

the normative data considerably. For this reason, statistical modeling is beneficial for any speech 

feature, as it can compensate for a systematic shift in values. Anyway, all normative acoustic data 

should be compared only to values calculated with the corresponding code because even similarly 

defined acoustic features can be incomparable when implemented differently. This general 

statement is based on analyses of accuracy and experiments with adjustments of methods evaluated 

in this thesis as well as evidence in the literature. For illustration, an analysis of sustained vowels is 

comparable typically for F0 characteristics but incomparable for the majority of other 

measurements (Bielamowicz et al. 1996, Oğuz et al. 2011, Burris et al. 2017). The unpredictable 

comparability of results by various algorithms is the rationale for this general limitation of acoustic 

analysis. 

4.1.4 Diadochokinetic test 

SEGMENTATION 

The diadochokinetic test and rhythm task are both, in essence, syllable repetition tasks. From the 

segmentation point of view, the biggest difference is the rapid of pace in diadochokinesis versus 

the self-determined pace of the rhythm test. The obstacles in the segmentation of diadochokinesis 

are analogous to the rhythm task; therefore, the advantageousness of the unsupervised approach 

represented here by the algorithm for segmentation of rhythm task can also be scrutinized on 

recordings of diadochokinesis. As diadochokinesis requires precise identification of voice onset 

and the additional detection of bursts, the algorithm for the segmentation of rhythm was adjusted 

to the rapid tempo of the diadochokinetic task, detected boundaries of voice onset were also 

refined by the unsupervised approach, and a new robust method for the detection of a burst was 

introduced–no other changes to the original algorithm were implemented. 

The comparison of detectors demonstrated that the unsupervised approach improves the accuracy 

of segmentation substantially. A detailed analysis of errors revealed that the adaptive approach is 

more robust to the situation in which voicing continues between syllables, some syllables are quiet, 

and the rhythm is more irregular. The precise identification of voiced onset proved to be a vital 

factor that lead to the improvement of the VOT estimation. As the period between glottal pulses 

in VOT can take up to approximately 20 milliseconds (i.e., a pitch of 50 Hz), even an error of one 

pulse can lead to disastrous results. The selection of the initial pulse via unsupervised clustering 

introduced a desirable adaptability into the detection of voice onset and hence boosted the 

accuracy of the decision in the deteriorated signal.  

In addition to voice onset, the precision of VOT relies on the precision of burst detection. 

A comparison of the available technologies for burst detection highlighted the convenience of 

phase-only reconstruction for the emphasis of the impulsive nature of a burst. Although interesting 

properties of phase-only reconstruction have been described by Oppenheim and Lim (1981), its 

implication for the localisation of impulses has been seriously overlooked. The precision was also 

improved by the statistical modeling of burst position, which diminished the importance of 

impulsive artefacts that may occur at the initiation of voicing or around the occlusion of the 
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previous vowel. Finally, a comparison of the errors in voice onset detection and burst detection 

stressed the importance of the precise detection of voice onset, which is commonly marginalized 

but has a considerable impact on the measured VOT and higher levels of errors than found in 

burst detection. 

Studies by Novotný (2014, 2015) did evaluate accuracy on a small portion of the database, 

as the larger dataset was previously not available. The database used for evaluation included very 

challenging recordings; thus, these results do not downgrade the algorithm by Novotný (2015) but 

rather highlight that the algorithm should be used only on less severe speech disorders. The 

detection of voice onset time is very sensitive to the precision of both burst and voice onset, as an 

error of estimated voice onset time grows when the detections of burst and voice onset are both 

simultaneously imprecise. The results of the correlation analysis suggest that there is a room for 

improvement, but, as the proposed method outperformed the others, and the majority of features 

were strongly correlated with the reference for a variety of diseases, the methodology was 

considered to be preferable for experimental use in clinical applications. 

SPEECH FEATURES 

The overall performance of diadochokinesis deteriorated in all types of dysarthria. The 

diadochokinesis of the RBD group, as well as  that for other diseases, was slow and irregular. Based 

on the correlation analysis, some of the RBD speakers possibly preferred adjusting their motion 

rate to momentary articulation capacity, and other speakers may have simply slowed the overall 

rate. In addition to compensation strategies, prolongation of vowels due to slow movements or 

vocal emphasis also contributed to the slow alternating motion rate in APS, HD, and CA. 

Phonation in APS, HD, and CA was not only poorly controlled by the laryngeal muscles but was 

also driven by abnormal respiratory movements, as the variance in loudness increased abnormally 

during diadochokinesis. The increased VOT suggests that difficulties in initiating vocalization 

develop early in the course of PD and possibly have a good response to medication (c.f. 

prolongation of pauses when reading the passage and performing the monologue). Note that the 

interpretation of VOT is not consistent amongst authors, but findings across other tasks suggest 

that phonation is more explanatory, which is in accordance with Duffy (2013). This paragraph 

demonstrated that interpretation of diadochokinetic task in the context of other diseases relies 

strongly on overall speech tendencies measured on tasks other than diadochokinesis. Since 

alternating motions cover a wide variety of motions, the decomposition of speech processes is 

rather difficult in diadochokinesis. Nevertheless, speech pathologists value this task, in particular, 

because it can describe the overall articulatory performance in simple terms.  

4.2 SPEECH PATTERNS 

The sensitivity of speech to neurological lesions and possible medications manifested in various 

trends in acoustic speech features. Generally, untreated groups showed abnormalities in more 

acoustic speech features, especially in connected speech, than the group treated for PD as well as 

the HD group. The effect of the increased duration of PDT compared to PDU (t-test, p<0.001) 

can be rejected, as to accept it would imply the opposite–a more frequent speech impairment for 

the PDT group. Overall, speech abnormalities were more salient in APS than PDT, suggesting a 

faster progression in APS.  

Despite the considerable overlap of symptoms across various diseases and treatment 

groups, the central tendencies associated with the inhibition and excitation of speech movements 
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distinguished several groups of diseases, notably PD and HD. Inhibition was identified as a 

dominant speech pattern in diseases that manifest hypokinetic dysarthria or mixed dysarthria with 

hypokinetic components, namely, PDU, PDT, and APS. Inhibition was observed more frequently 

in RBD than in HC (z-test, p<0.001), suggesting that an inhibitory speech pattern may indicate 

prodromal Parkinsonian neurodegeneration. Based on an analysis of weights by the newly 

introduced methodology, monopitch was found to be more important for the recognition of the 

pattern followed by monoloudness. Interestingly, in agreement with our findings, monopitch and 

monoloudness were ranked by DAB as the first and third most important speech dimensions 

constituting hypokinetic dysarthria, respectively. Note that the inhibitory pattern was not meant 

to substitute for the pattern of hypokinetic dysarthria, but it can be generally associated with it.  

Diseases associated with hyperkinetic and/or ataxic dysarthria or mixed dysarthria with 

hyperkinetic and/or ataxic component frequently showed an excitatory pattern. All HDT patients 

and the majority of HDU patients showed an excitatory pattern, which can be linked to the 

involuntary movements in HD. The presence of an excitatory pattern in MS and CA results 

presumably from the excessive range and force of speech movements associated with ataxia. It is 

noteworthy that excitation was observed more frequently in patients with MSA compared to 

patients with PSP (z-test, p<0.01), which emphasizes the contribution of this approach for the 

improved recognition of APS. 

The hallmarks of ataxic and hyperkinetic dysarthria fall into the same category of excitatory 

speech pattern, which diverges from the categorization introduced by the DAB to categorize 

movement disorders. The rationale was given by the definition introduced in the thesis (see section 

2.4.5 EXCITATORY AND INHIBITORY SPEECH PATTERNS, page 45). In addition, simple acoustic 

measures cannot distinguish exaggerated speech movements due to involuntary movements and 

discoordination. Acoustic features that are commonly associated with ataxic dysarthria, such as an 

irregular diadochokinetic rate (Kent et al. 2000), measure ataxia indirectly and require thorough 

interpretation with regards to other findings. Although clinicians can recognize ataxic dysarthria 

reliably via perceptual judgements, even without proper knowledge concerning a patient’s language 

abilities (Kent et al. 1998), a simple acoustic measure can hardly substitute for the exquisite 

processing of the human auditory cortex in this task. Even the perceptual speech characteristics 

of ataxic dysarthria overlap frequently with hyperkinetic dysarthria (see Table 15-4 by Duffy 2013). 

Ataxic movements can be deduced from the co-occurrence of acoustic features, but individual 

acoustic features for ataxia would require knowing the target. The intentions of the speaker, such 

as chosen loudness, the position of articulators, or pitch, must be compared with the speaker’s 

performance in order to quantify ataxic movement. Hypothetically, the target can be predefined 

as in the experiments by McClean et al. (1987) or modeled based on recognized or predicted 

contents of speech, which would lead to a very sophisticated algorithm. This hypothesis crystalized 

from a deep analysis of processing methods and is mentioned here to justify the proposed 

definition of inhibitory and excitatory speech patterns. The development of a new method for the 

analysis of ataxia is far beyond the scope of this thesis, and the database is unsuitable for validation; 

thus, this paragraph is intended only to clarify the situation and to inspire future development of 

acoustic speech features for ataxia. 

Generally, the overall deterioration of speech motor control can lead directly or via a 

compensatory mechanism to inhibitory manifestations of acoustic features. In addition, excitatory 

patterns of acoustic speech features may arise when deteriorated motor control induces instability 

into speech production. Therefore, speech features must be selected thoroughly in order to 
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increase the informative value of the pattern for diagnostic purposes, especially due to the 

increased overlap in the advanced stages of speech disorders.   

Inhibition can be measured principally on tasks with an increased variance in speech 

movements, such as connected speech that is rich in melody, loudness levels, and stress patterns. 

In other words, high activity of speech subsystems is required from the speaker to measure 

inhibition. Conversely, excitation can be measured for a task with a reduced variance in speech 

movements, such as sustained vowels that are performed steadily with the low overall activity of 

speech subsystems. In sustained vowels, the target is to perform with the lowest variability 

possible. Thus, any discoordination or involuntary movement can be measured directly as 

increased variance.  

A simple combination of sustained vowels for the measurement of excitatory speech 

movements and connected speech for the measurement of inhibitory speech movements proved 

to be successful strategy with which to estimate incidences. Although the diadochokinetic test and 

rhythm task may increase the incidence of patterns within disease groups, the possible overlap 

between patterns would degrade the diagnostic value for more severe speech disorders.  

Various classifiers, including naïve Bayes based on a kernel density estimation, support a 

vector machine with radial basis function, or a shallow neural network can recognize the proposed 

speech patterns. Notably, a novel approach based only on the weighted fusion of z-scores showed 

a performance in recognising speech patterns that was comparable to the other classifiers despite 

its simplicity. The biggest advantage of the proposed pattern recognition is that it can decompose 

a speech pattern into the contributions of individual speech features, making its results highly 

interpretable. The majority of classifiers serve as so-called “black boxes” that provide only 

decisions without any explanation. The contribution of features calculated by the proposed 

methodology explains decision fully and allows the user to judge the reliability of the prediction in 

terms of other factors not in the computational model, such as speech idiosyncrasies. 

Consequently, the results of the classification obtained by the method described in this thesis are 

transparent and make it possible to interpret the results in the context of other findings, patients’ 

histories, or socioeconomic backgrounds. Additionally, the accordance between the trained pattern 

and hypotheses can be tested easily by checking the weights of individual speech features, which 

is priceless for preventing overtraining. Another advantage of the method is that it allows the 

clinician to consider the severity of the speech pattern anomalies proportionally to the enumerated 

value of the z-score or p-value.  The classification experiment used a significance level of 0.05, but 

any other level can be tested as well to control the sensitivity of the decision easily in various 

situations, such as a high-throughput screening of the population vs. screening within the high-

risk group. The presented methodology for classification complies fully with the demands for a 

medical-grade classifier for the recognition of speech patterns.  

4.3 CLINICAL APPLICABILITY 

Compliance with the requirements of a clinical examination, as summarized in the introduction to 

this thesis, and the experimental use of the software evaluated by the survey were the key sources 

for the discussion of the proposed methodology in terms of clinical applicability. Answers to 

questions presented in the guidelines “What To Ask When Evaluating Any Procedure, Product, 

or Program” by The American Speech-Language-Hearing Association (2018) were embedded into 

the frame of the discussion in order to facilitate ranking of the presented method. 
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The methodology was designed as an acoustic analyzer of dysarthria for speech 

pathologists and neurologists. Based on an analysis of different recording devices (Rusz et al. 

2018), only a recording system (type and manufacturer) similar to the one that was used for 

recording the control database should be used for a complex assessment of dysarthria. If a different 

recording system is desired, then a new control database must be recorded on the device or a 

similar brand since recording devices have different spectral characteristic which can influence the 

acoustic analysis, with a small exception being intonation- and segmentation-based descriptors 

(Rusz et al. 2018). The hardware and system requirements of the software are determined by © 

MATLAB (MathWorks, Natick, Massachusetts, USA) and may vary depending on the version. 

Only basic computer literacy is necessary for the execution of the analysis, i.e., the management of 

files and folders, interaction with the simple graphical user interface, and opening html files in a 

web browser. Depending on the recording procedure, trimming audio files in the audio editor may 

be required, especially when the examination was recorded into one file. All requisites can be 

trained within a brief session. No training material has been developed currently for the 

developmental stage of this project. Thus, only those individuals trained personally can be 

considered to be qualified.  

The database analyzed in the thesis comprised various stages of hypokinetic, hyperkinetic, 

and mixed dysarthria with hypokinetic, spastic, ataxic, or hyperkinetic components. The 

methodology is applicable for neurodegenerative diseases associated with a dysfunctional basal 

ganglia and cerebellum. Although MS and CA can also affect the brainstem and spinal cord, the 

analysis would require a larger dataset and specific evaluation to support the extended application 

of the methodology. Recommended diseases can be analyzed and interpreted reliably, but, for 

others, interpretation is not possible due to the lack of knowledge about the incidence of acoustic 

speech manifestations. Indeed, few anomalies were identified in patients with another diagnoses 

during the experimental use by a speech pathologist. Unfortunately, an extension of the database 

would be required for clarification of these unexpected findings. Since many speech parameters 

can vary based on language, especially features measured on connected speech, the normative data 

provided by the thesis are applicable only to Czech native speakers. When a new language is 

desired, a special control group in the new language must be recorded to obtain valid normative 

data. 

Based on the survey, the proposed methodology’s software was appreciated as user-

friendly, offering a high degree of interpretability and clinical relevance. The most positively rated 

aspect was the increased intelligibility of results induced by the statistical modeling of measured 

values and patterns. Furthermore, all models were linked to hypotheses concerning the underlying 

speech pathologies; thus, no deep understanding of digital signal processing and machine learning 

is required for the interpretation of the results. The statistical modeling proposed in the thesis 

eliminates the effects of sexual dimorphism and age and allows the clinician to consider the degree 

of abnormality without prior knowledge of the normative data. Therefore, the methodology can 

be employed with ease by speech pathologists, neurologists, and other clinicians.  

The methodology does not suggest any diagnostic option. Only basic speech tendencies 

are suggested to the clinician, since more data than an acoustic signal is required for the diagnosis 

of a motor speech disorder. Based on the presented findings, speech patterns evolve with disease 

progression, individual response to therapy, specific compensation of speech disability, and the 

patient’s emotional state, all of which can hardly be modeled based on the current database and 

knowledge about the mechanisms behind speech patterns. Generally, all of the variables that a 
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clinician considers in a diagnosis must be incorporated into a computational model to automate 

the diagnosis of dysarthria. Building such a universal model would require tremendous longitudinal 

data for various diagnoses, medications, and languages. Finally, acoustic methods can be 

introduced into ambulances as something that analyzes not diagnoses, simply because clinicians 

are intuitively aware of these limitations.  

The thesis introduced a method that extends and objectifies acoustic speech symptoms of 

neurodegeneration with a high degree of interpretability. Several novel features, such as descriptors 

of subharmonics, are capable of deciphering phenomena that can be hardly or vaguely described 

by perceptual features. The form of the proposed report was highly appreciated for its lucidity. 

The dizzying array of various characteristics can be reviewed quickly, simplifying the examination 

of speech for an examiner and allowing him or her to fully concentrate on the patient. The 

longitudinal charts, in particular, pleased the clinician as well as the patients since a simple image 

is capable of capturing the patient’s performance with more lucidity than mere words. The 

encouraging effect of a plotted performance is well known, and manual charting is recommended 

by prominent speech pathologists, despite the fact that manual charting can be bothersome 

(Dworkin 1991). The proposed methodology eliminates completely the manual recording of 

scores. The clinician can then fully interact with the patient, and the patient is no longer 

preoccupied with the resulting score (Dworkin 1991). In summary, the methodology can help 

clinicians to identify the critical breakdown in the hierarchy of speech production and track speech 

changes over time with ease. 

The accuracy analysis conducted on a large database of various disorders demonstrated 

that the methodology for the processing of acoustic signals used for the calculation of speech 

features represent the most precise method available up to the date of this thesis. Currently, no 

comparable methodology for a complex acoustic analysis that employs statistical modeling of 

speech features and has been validated on a large dataset of various diseases is available. The 

application is currently not publicly available, but a demo version will be released in the future.  

4.4 LIMITATIONS AND FUTURE STEPS 

Only recordings of sustained vowels, the rhythm task, the diadochokinetic test, and connected 

speech were subjected to analysis. These selected tasks can assess basic speech abnormalities 

associated with diagnoses in the database in a complex fashion (Duffy 2013). Nevertheless, they 

represent only a portion of the possible tasks that can contribute to the examination of speech. 

Highly specialized isolated tasks, such as the fast repetition of syllables or prolongation of unvoiced 

fricatives, were requested by speech pathologists during the development of the algorithms 

because they can be convenient for tracking the individual effects of speech therapy. 

Unfortunately, development of algorithms covering these tasks was not possible because the 

database was originally built for analysis of diagnostic features, not for speech therapy; thus, these 

specialized tasks were not recorded in the database.  

The cross-sectional design of the database is another factor that limits the hypothesized 

benefits of the methodology for tracking speech therapy. However, the qualities of the 

methodology for tracking speech changes were verified during experimental use. Future evolution 

of the application will most likely be centered on longitudinal data and isolated tasks since these 

topics are desirable for clinical practice.  
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Currently, the normative data are restricted to the Czech language. Although the isolated 

task may be robust against the effect of the language, the use of the presented normative data on 

other languages will presumably lead to invalid results. Only a thorough analysis across multiple 

languages could warrant language independency. Generally, language influences acoustic features 

in connected speech strongly (Maidment 1976, Ramus et al. 1999), and an exception can be hardly 

envisaged for all proposed metrics. To conclude, the future database must cover multiple languages 

to verify extended applicability, since many of the speech manifestations that are salient in the 

Czech language may not be salient in other languages and vice versa.  

Acoustic features based on simple statistics, such as mean values and the dispersion of 

parameters, were preferred in the thesis because more complex processing would require either 

laborious analysis, such as the evaluation of stress patterns, or reference measures, such as those 

obtained with electromyography. Despite the simplicity of the proposed metrics, clinicians may 

not understand all novel features correctly. Namely, the entropy of speech timing seems to be a 

very problematic term for anybody with a background only in speech pathology. Addressing the 

relation between therapeutic effects and speech features will be necessary to induce intuition 

concerning these complicated terms. 

The biggest limitation identified during experimental use was related to the fact that speech 

was recorded into the flash card, then manually trimmed and analyzed on different devices, which 

is laborious and does not allow for controlling the quality of the recording process. Since the 

recording system used for collecting the database and in the experimental application had to be 

similar, these technical obstacles could not be addressed during the experimental use. Nevertheless, 

this limitation can be removed in the future through the incorporation of the recording process 

into the analyzing application. 

Currently, the normative data can be compared only to recordings captured by a recording 

system of the same brand as that used in the thesis. Spectral measures, such as RFA, can be 

influenced considerably by the spectral characteristic of the recording system. Unpublished 

experiments with Wiener filtering of the data captured by a smartphone demonstrated that the 

spectral characteristic can be compensated for sufficiently, but only if the microphone is placed 

steadily as described in section 2.2 RECORDING PROCESS, page 19. An analysis of the compensation 

filter showed that any adjustment of the microphone position can lead to an alteration in the 

measured spectrum, which can be problematic, especially when recording via smartphone since 

position is not as strictly defined as it is when a headset is used. Technically, the majority of 

obstacles that prevent the wider use of acoustic analysis were tackled by the thesis, except the 

effect of the microphone. The short-sighed solution can be based simply on the recording of a 

control database using the preferred device. The sophisticated solution could compensate for 

spectral characteristics via the reference signal, which would require a thorough analysis of signals 

recorded simultaneously using several devices.  

Only the fundamental issues of the thesis were addressed here. The survey on the 

experimental use identified some minuscule problems that relate more to the implementation of 

the methodology and thus can be solved programmatically, e.g., the scaling of the longitudinal 

graphs. The thesis was not meant to be about implementation of software and does not provide 

the code with regard to the developmental stage of the project. Due to limited human resources, 

only one clinician was involved into the experimental use. Nevertheless, the clinician’s exceptional 

commentaries definitely helped to identify the critical deficits and strengths of the proposed 

system. The questionnaire was included in the thesis rather as a basis for discussion of applicability 
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than as a tool for the evaluation of the possible clinical impact of the method. Only long-term 

experimental use and further development in cooperation with clinicians could clarify whether or 

not the proposed approach has the potential to revolutionize the art of dysarthria assessment. 
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5 

CONCLUDING 

REMARKS 
 

Any damn fool can get complicated, but it takes a genius to attain simplicity. 

–Pete Seeger, Woody Guthrie Folk Songs, 1963 

 

he thesis summarizes the author’s experiences, ideas, and discoveries in the form of a 

comprehensive recipe for the acoustic analysis of dysarthria covering all levels of acoustic 

examination from capturing the data, though innovative methods for digital signal 

processing and the modeling of speech features to the design of a highly intelligible report. 

Principally, the thesis contributes to the knowledge-driven approach through hand-designed 

acoustic features and opposing the current trend in data-driven acoustic analysis. The results of 

the accuracy analysis suggest the crucial role of adaptability in the digital processing of disordered 

speech. The models of speech patterns presented in the thesis overcame the fundamental 

limitation of acoustic analysis by reducing the effects of age and sexual dimorphism. Additionally, 

a novel approach for pattern recognition and decomposition achieved a comparable performance 

to other established recognition methods and showed increased transparency and interpretability 

of results. The statistical analysis of acoustic features stressed the importance of speech patterns 

due to the overlap between individual characteristics of dysarthrias. The inhibitory and excitatory 

speech patterns introduced by the thesis qualify as an efficient way to describe elementary 

tendencies of speech movements detectable by simple acoustic measures. In summary, the thesis 

defined clinically applicable solutions for acoustic analysis that may extend the current battery of 

tests used for the examination of speech from the prodromal to developed stages of 

neurodegenerative diseases. 
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APPENDIX A: 

NORMATIVE DATA FOR 

THE CZECH LANGUAGE 
 

ormative data are plotted on following pages separately for males (dark blue) and females 

(light pink). Values for the males are located on the left side of ticks and values for the 

females on the right side of ticks within the same figures. The parameters of the 

lognormal distribution were exponentiated in order to plot the results in original scale. Points 

denote the mean values of the normal and lognormal distributions or the shape parameter of the 

gamma distribution. Error bars illustrate the standard deviations of the normal and lognormal 

distributions or the scale parameter of the gamma distribution. Features, described by task and 

abbreviation, are listed in alphabetical order.  

Abbreviations: DDKI = diadochokinetic irregularity, DDKR = diadochokinetic rate, stdPWR = 

standard deviation of power, VD = vowel duration, VOT = voice onset time, AST = acceleration 

of speech timing, DPI = duration of pause intervals, DUF = decay of unvoiced fricatives, DUS = 

duration of unvoiced stops, DVI = duration of voiced intervals, EST = entropy of speech timing, 

GVI = gaping in between voiced intervals, LRE = latency in respiratory exchange, PIR = pause 

intervals per respiration, RFA = resonant frequency attenuation, RLR = relative loudness of 

respiration, RSR = rate of speech respiration, RST = acceleration of speech timing, stdF0 = 

standard deviation of fundamental frequency, stdPWR = standard deviation of power, DVA = 

degree of vocal arrests, HNR = harmonics-to-noise ratio, LSI = location of subharmonic intervals, 

MPT = maximum phonation time, PSI = proportion of subharmonic intervals, stdPSD = standard 

deviation of power spectral density, EFn_M = degree of hypernasality, EFn_SD = intermittend 

hypernasality, NSR = net speech rate, RA = rhythm acceleration, RI = rhythm instability.

N 
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APPENDIX B: 

NORMALIZED VALUES 

OF SPEECH FEATURES 
 

he normalized values of features are summarized in boxplots representing the 

characteristics of individual groups. Mean values are market with circles. In order to 

increase the readability of the graphs, outliers were not depicted and all values were limited 

in range from -20 to 20. Features, described by task and abbreviation, are listed in alphabetical 

order. 

Abbreviations of groups: HC = healthy control, RBD = rapid eye movement sleep behavior 

disorder, PDU = untreated Parkinson’s disease, PDT = treated Parkinson’s disease, MSA = 

multiple system atrophy, PSP = progressive supranuclear palsy, HDU = untreated Huntington’s 

disease, HDT = treated Huntington’s disease, CA = cerebellar ataxia, MS = multiple sclerosis. 

Abbreviations of features: DDKI = diadochokinetic irregularity, DDKR = diadochokinetic rate, 

stdPWR = standard deviation of power, VD = vowel duration, VOT = voice onset time, AST = 

acceleration of speech timing, DPI = duration of pause intervals, DUF = decay of unvoiced 

fricatives, DUS = duration of unvoiced stops, DVI = duration of voiced intervals, EST = entropy 

of speech timing, GVI = gaping in between voiced intervals, LRE = latency in respiratory 

exchange, PIR = pause intervals per respiration, RFA = resonant frequency attenuation, RLR = 

relative loudness of respiration, RSR = rate of speech respiration, RST = acceleration of speech 

timing, stdF0 = standard deviation of fundamental frequency, stdPWR = standard deviation of 

power, DVA = degree of vocal arrests, HNR = harmonics-to-noise ratio, LSI = location of 

subharmonic intervals, MPT = maximum phonation time, PSI = proportion of subharmonic 

intervals, stdPSD = standard deviation of power spectral density, EFn_M = degree of 

hypernasality, EFn_SD = intermittend hypernasality, NSR = net speech rate, RA = rhythm 

acceleration, RI = rhythm instability.

T 
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APPENDIX C: 

SOFTWARE 

APPLICATION 
 

he minimalistic graphical user interface (GUI) was designed to reduce the demands on the 

computer literacy of the user. The interactions between the application and user were 

reduced using the following approach. Since the application requires numerous MATLAB 

scripts, a batch file (dysan.bat) was coded for setting path to m-files, starting MATLAB and the 

GUI. All m-files can be saved in other than the working directory (specified by the path in 

dysan.bat). The working directory is defined by the location of dysan.bat, which can be changed 

simply by copying dysan.bat into a new location. The application does not require a user to link all 

relations between individual recordings and task and subjects manually, because the application 

determines all the relations from locations and names of the recordings automatically. All 

recordings must be located and named by following standard.

T 
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The working directory contains a directory called database. The database directory is 

divided into subfolders of tasks. The subfolder ddk corresponds to diadochokinetic task, rhythm 

to thythm task, phonationA to sustained vowel /A/, phonationI to sustained vowel /I/, 

monologue to monologue task, and text to reading passage. Each recording can be located only 

within the subdirectory of the corresponding task. A task of the recording is thus determined by 

its location within the directory structure. Examples of locations can be found in Table C1. 

Each speaker is identified by a unique code in the format “nameNUMBER,” where the 

name must consist of only alphabetic characters, and NUMBER must only consist of numeric 

characters3. Additionally, a session can be defined numerically in the format 

“nameNUMBER_xR,” where x is a numeric character representing the order of the session, and 

the character ‘R’ is a suffix used for the increased readability of the code. Sessions can also be 

defined by date in the format “nameNUMBER_dd.MM.yyyy” or “nameNUMBER_yyyy-MM-

dd,” where dd is the day, MM represents the month, and yyyy is the year. Examples of codes can 

be found in Table C1. All recordings of a speaker have to be named according to the speaker’s 

identification code. Multiple repetitions of a task can be distinguished by adding a single alphabetic 

character to the code as a suffix, e.g., recordings belonging to speaker HC101 could have HC101a, 

HC101b, and HC101c and so forth under their name, or recordings of speaker HC102_1R could 

have names  HC102_1Ra, HC102_1Rb, HC102_1Rc and so forth. All recordings that are located 

in the same subfolder of the task and are named with similar speaker’s identification code but 

different suffix belong to the same speaker performing multiple repetition of the task. In summary, 

the code defines the speaker and his session. All recordings of one speaker within the session must 

have a similar code, whereas only the suffix can vary to identify repetitions. Off course, no suffix 

is required when the speaker performed  the task only once. See table Table C1 for more examples. 

When dysan.bat is executed in an otherwise empty working directory, a directory structure 

of the database, including subdirectories of tasks, is generated automatically. Of course, a user can 

create the directory structure on their own. The execution dysan.bat will start the GUI illustrated 

in Figure C1. Since age and gender are required for the exploitation of all features provided by the 

methodology, the user is allowed to define these characteristics in the table datalist.csv or manually 

via the GUI. The table datalist.csv can be generated via the button “Generate datalist.csv” in the 

help dialogue or manually using the following standard. The first column of the table represents 

the code name of the speaker, and the second column denotes the group– here, any combination 

of alphanumeric characters are appropriate for entry, e.g.,  HD or MJ12. Next, the third column 

specifies gender using the abbreviations M for male and F for female. Finally, the fourth column 

defines age in years. Currently, the application is limited to only the Macintosh format for csv-files. 

The user is allowed to analyze all of the data or individual speakers by selecting an option 

in the pop-up menu (see “Select subject” in Figure C1). The default option “- all subjects –“ 

performs an analysis across all of the subjects in the database. The user is not allowed to define 

speakers’ characteristics via the GUI, and all characteristics are gathered from datalist.csv. All 

options will show up after clicking on the po-up menu (see Figure C2), and the user can then select 

a group for analysis. Speakers with recordings spanning more than one session are marked as 

longitudinal. If, for example, the user wishes to select an individual speaker, then they would 

position the cursor over that speaker’s code name, highlighting their choice, and click. Their 

confirmed choice would then label the pop-up menu after the menu colapses (see Figure C3). The 

user could then define the age and gender of this subject.  

                                                 
3 The length of a code is not limited by the application. However, the filename must be shorter than 255 characters.  
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Analysis will begin after user clicks on the “START” button. Then all controls will become 

unactive with the exception of the “QUIT” button, which interrupts all processes and closes the 

application. The controls are reactivated after all of the requested results have been generated. Raw 

values are provided in the table results.csv. When all of the characteristics of a speaker are available, 

a report based on normalized values is generated and placed into an html-file under the code of 

the analyzed subject. When a speaker was recorded in multiple sessions but no characteristics are 

known, the report is based on just the raw values of the speech features. No report is generated 

for subjects with unknown characteristics recorded within one session.  

The application saves data into a temporary folder “./var” that is created after the start of 

an analysis and removed after quitting an application. 

 

File or folder Description 

The application’s files and folders  
 ./dysan.bat Batch file starts MATLAB, set paths, and starts graphical interface 
 ./datalist.csv Table of speakers’ characteristics (optional). 
 ./var/ Temporary directory used during processing and removed after application exit. 
The database paths  
 ./database Directory of database 
 ./database/text/ Subdirectory for recordings of reading the passage 
 ./database/monologue/ Subdirectory for recordings of monologue 
 ./database/rhythm/ Subdirectory for recordings of rhythm task 
 ./database/ddk/ Subdirectory for recordings of diadochokinetic task 
 ./database/phonationA/ Subdirectory for recordings of sustained vowel /A/ 
 ./database/phonationI/ Subdirectory for recordings of sustained vowel /I/ 
Examples of recordings  
Recordings of various tasks by HC101 
 ./database/rhythm/HC101.wav Example of the single performance of rhythm task by subject HC101. Note that suffix 

is optional in this case since single performance does not need to be distinguished. 
 ./database/phonationI/HC101.wav Example of the single performance of sustained vowel /I/ by subject HC101. 
 ./database/ddk/HC101a.wav Example of the first repetition of diadochokinetic task by subject HC101. Note that 

suffix was required to identify repetition (cf. previous example of single performance 
of rhythm task and reading passage). 

 ./database/ddk/HC101b.wav Example of the second repetition of diadochokinetic task by subject HC101. 
 ./database/ddk/HC101c.wav Example of the third repetition of diadochokinetic task by subject HC101. 
Various tasks by HC205 recorded within session 1R 
 ./database/rhythm/HC205_1Ra.wav Example of first repetition of rhythm by subject HC205 recorded within session 1R 
 ./database/rhythm/HC205_1Rb.wav Example of first repetition of  rhythm by subject HC205 recorded within session 1R 
 ./database/rhythm/HC205_1Rc.wav Example of first repetition of  rhythm by subject HC205 recorded within session 1R 
 ./database/text/HC205_2R.wav Example of single performance of reading passage by subject HC205 recorded within 

session 1R. Note that suffix is not required to identify single performance of the task. 
Various tasks by HC205 recorded within session 2R 
 ./database/rhythm/HC205_2Ra.wav Example of first repetition of rhythm by subject HC205 recorded within session 1R 
 ./database/rhythm/HC205_2Rb.wav Example of second repetition of  rhythm by subject HC205 recorded within session 1R 
 ./database/ monologue /HC205_2Ra.wav Example of first repetition of sustained vowel /I/ by subject HC205 recorded within 

session 1R 
 ./database/ monologue /HC205_2Rb.wav Example of second repetition of sustained vowel /I/ by subject HC205 recorded within 

session 1R 
Various tasks by MSA423 recorded on Christmas Eve 2018 with date specified using yyyy-MM-dd format 
 ./database/ddk/MSA423_2018-12-24.wav Example of single performance of diadochokinetic task by subject MSA102 recorded 

on Christmas Eve 2018.  Note that suffix is not required in this case. 
 ./database/phonationA/MSA423_2018-12-24a.wav Example of first repetition of reading passage by subject MSA102 recorded on 

Christmas Eve 2018 
 ./database/phonationA/MSA423_2018-12-24b.wav Example of second repetition of reading passage by subject MSA102 recorded on 

Christmas Eve 2018 
Various tasks by PD534 recorded on Christmas Eve 2018 with date specified using dd.MM.yyyy format 
 ./database/ddk/PD534_24.12.2018.wav Example of single performance of diadochokinetic task by subject PD534 recorded on 

Christmas Eve 2018.  Note that suffix is not required in this case. 
 ./database/phonationA/PD534_24.12.2018a.wav Example of first repetition of reading passage by subject PD534 recorded on Christmas 

Eve 2018 
 ./database/phonationA/PD534_24.12.2018b.wav Example of second repetition of reading passage by subject PD534 recorded on 

Christmas Eve 2018 

Table C1: Summary of files and folders within the working directory. 
Working directory is symbolized by dot/slash (./). 
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Figure C1: Screenshot of the application after start. 

 

 
 
Figure C2: Screenshot of the application during the selection of a subject. 
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Figure C3: Screenshot of the application after the selection of the subject. 
 Note that the fields for age and gender are activated. 

 

 
 
Figure C4: Screenshot of the application during the processing of the data.  
Notice that all control elements are inactive except the “Quit” button. 
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APPENDIX D: 

QUESTIONNAIRE 

FEEDBACK 
 

The filled in questionnaire is presented on the following pages.
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Name: Hana Růžičková     Date: 22.9.2018     Occupation: Speech pathologist 

 Mark your answer  

Question -5 -4 -3 -2 -1 0 1 2 3 4 5 ? Detailed answer (optional) 

1. How easy was it to perform acoustic 
analysis?  Do not consider the manual 
trimming of recordings. (higher score–
easier) 

          5  
The software was user friendly–only error I made was in renaming recordings, i.e., manual 
trimming, everything else was OK. I highly appreciate the suggested descriptions and 
interpretations of parameters. 

2. Was the application a burden on 
your attention? Do not consider the 
manual trimming of recordings. 
(lower  score –more burden) 

         4   

Results were not available immediately, because it was not possible to trim recordings during 
the session with the patient. Consequently, I had problems remembering results and explaining 
them to my patient during the next session. In other words, the problem was that the days for 
examination and acoustic analysis differed due to the manual trimming of recordings, which 
distracted my attention. I can write notes, of course, but that takes too much time and can 
hardly be performed regularly in clinical practice. To be honest, I cannot answer this question 
properly, but the software brings so many benefits that it is worthy despite this limitation.  

3. Did you find any features that made 
the analysis time consuming? If any, 
comment on them, please. 
(lower  score–more time consuming) 

        3    

The interpretation of complex pause characteristics was too difficult for me–phonation, 
respiration, and phrasing have considerable influence on the result–I have to inspect various 
pause characteristics in different locations within the diagrams when I want to consider pause 
characteristics as a whole. Despite my willingness, I still have not memorize all of the 
abbreviations of the acoustic features. Therefore, I have to consult the table, which slows me 
down. 

4. Do you appreciate that the analysis 
for individual recordings was fully 
automated? 

          5  Yes, considerably. 

5. Do you think that the proposed 
analyses meet the requirements of 
clinical practice? Consider function, 
simplicity, etc.  

         4   

I find the software to be very beneficial, but disproportional–prosodic features (pause, melody) 
are overly empathized. There are not many features correlating with facial movements or 
dysfluency (palilalia, hesitation phenomena, saccades). Once, I had a problem with the 
microphone. A few parts of the signal were noisy, and I lost one recording completely (it was 
even more troublesome, as I did not make notes during the session). Some indication of a 
problem with the recording system would be very helpful to clinicians.  
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 Mark your answer  

Question -5 -4 -3 -2 -1 0 1 2 3 4 5 ? Detailed answer (optional) 

6. Mark how much the analyses 
provide results in concert with your 
clinical judgement. (higher score -> 
more agreeable) 

         4   
Yes, for majority of cases–especially, diseases upon which the application was developed. 
Diseases that were not validated for the application showed some anomalies. 

7. Did the analyses highlight any 
overlooked aspect of speech disorders? 

         4   
Entropy of speech timing is quite difficult for me to understand and interpret–the parameter is 
very complex. 

8. Do you think that the application can 
help to address critical issues in speech 
disorders and track the progression of 
speech therapy? 

          5  Yes, considerably. 

9. Did you find that the analyses could 
provide a quick and reliable summary 
of trends in a speech disorder? 

        3    
I do not find it quick enough–clinical practice require that recordings be analyzed on the same 
day, which is not easy due to the manual trimming of recordings. The feedback in  speech 
therapy is limited then. 

10. Do you think that the use of the 
application could support or improve 
diagnostic decisions?  

        3 4   

I propose a score between 3 and 4. The proposed software is definitely applicable. I regard it 
only as a supporting tool because diagnosis requires one to consider other factors, such as 
socioeconomic status, mental complications due to diagnosis, etc., that can influence many 
speech dimensions, especially prosody. 
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 Mark your answer  

Question -5 -4 -3 -2 -1 0 1 2 3 4 5 ? Detailed answer (optional) 

11. Did the visualization help you to 
gain a comprehensible insight into 
speech disabilities? 

          5  Yes, considerably. I really appreciate it. 

12. Did the visual symbolism, e.g., red 
/ green color and rounded / cornered 
shape, make it easier to read results? 

          5  
The orientation was perfect on the monitor. Diagrams are less readable when printed in black 
and white (an option for black-and-white printing would be very helpful). 

13. Do you find the normalized values, 
i.e., z-scores and probabilities, more 
interpretable than the raw values of 
speech features? 

          5  Yes, I find it more convenient. 

14. Did the interpretation suggested by 
the application show a clinical validity? 

         4   
Mostly yes–when I did not agreed, I considered the anamnesis of the patient; thus, deviations 
from the assumed model. 

15. Did the longitudinal graphs of the 
normalized results illustrate the course 
of progression or effect of therapy in a 
clearer way than a reading of raw 
values? 

         4   
Yes–it is more illustrative and quick. Everybody can understand it very well. Problems arise 
occasionally when a  patient shows an abnormality outside a given range. Then the trend is clear 
and the table must be read, which can be time consuming. 
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  Mark your answer  

Question -5 -4 -3 -2 -1 0 1 2 3 4 5 ? Detailed answer (optional) 

16. Was the use of application more 
beneficial than time consuming? 

        3    
I record the patient in one room, trim the recordings in the second room, and sometimes 
analyze in another room, which is time demanding. Such a complex situation happens in 
my clinical practice and can be generally expectable. 

17. Do you find the application 
valuable for tracking speech quality 
over time? Consider the encouraging 
effect on a patient. 

          5  
It is incredibly helpful and objective feedback for me as a clinician and for the patient 
(motivation). 

18. Does the application include new 
speech features that can improve your 
diagnostic / treatment decision? 

          5  
Previously, I classified subharmonics as hoarseness. Thanks to the application, I can 
recognize them as a special symptom and make my diagnosis more detailed. 

19. Does the application provide any 
speech feature that have no equivalent 
in terms of auditory-perception and 
that can enrich your insight into speech 
disorders? 

        3    I still have problems understanding entropy. 

20. Did an overview provided by the 
application allow you to focus on 
individual aspects of speech in more 
details than you usually do? 

         4   
Yes and no–I intend to reflect on a patient’s preferences and priorities in addition to the 
objective outcome of the acoustic analysis. 
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 Mark your answer  

Question -5 -4 -3 -2 -1 0 1 2 3 4 5 ? Detailed answer (optional) 

21. Would you prefer representation of results 
other than through a probability / z-score? If 
so, please specify your choice. 

          5  No, I find the current representation to be suitable. 

22. Would you appreciate an indication of a 
mild / moderate / severed speech abnormality 
rather than the normal / rare indication used in 
the application? 

     0       I do not mind. 

23. Do you think that integrated recording or 
automated recognition of tasks would make 
the application more attractive to clinicians 
compared to the time-consuming manual 
trimming used in the experimental version? 

          5  Yes, absolutely. 

24. Would you appreciate a more supervised 
approach, such as user-controlled and being 
able to adjust critical parts of the analytical 
process, i.e., manual selection of the analyzed 
signal? 

         4   
It seems attractive to me–only if I would be able to organize it. I would also 
some training to use it, of course. 

25. Do you find the classification excitatory vs. 
inhibitory too limiting for a clinical application 
or did you find some convenience and 
applicability in it? If you are interested in no or 
another classification, please comment on it. 

          5  Yes, I find it suitable. 
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